26、解决多维多路数字分区问题的变邻域搜索方法

解决多维多路数字分区问题的变邻域搜索方法

1. 变邻域下降算法概述

变邻域搜索(Variable Neighborhood Search)是一种单解元启发式算法,其核心思想是系统地改变邻域结构,以跳出局部最优解。不同邻域结构的使用基于以下观察:并非所有邻域结构都需要找到相同的局部最优解。一方面,全局最优解是所有邻域结构的局部最优解;另一方面,尽管邻域结构多样,但对于许多问题,局部最优解相对接近。基本的变邻域搜索及其变体已应用于许多优化问题,如调度、路由等。

1.1 初始解构建

为构建初始解,考虑码头集合 (S = \sum_{q\in Q} \pi_q),其中每个排列 (\pi_q) 包含将在码头 (q) 装载的船只列表,采用基于码头排列的表示法。提出了一种贪心算法,为顺序变邻域下降(seq - VND)元启发式算法生成可行的起点。其主要思想受工作站平衡分配启发,将港口视为工作单元,每个码头代表设备或工作站。定义船只(任务)的装载(执行)顺序,遵循先来先服务(FCFS)规则选择船只。贪心过程根据预定义顺序并考虑码头长度将船只分配到码头,定义每个码头分配的船只数量 (N = \lfloor \frac{|V|}{|Q|} \rfloor)。

匹配船只和码头后,提出构造性启发式算法 (G - FCFS) 为解生成可行的调度。将规划期和码头离散化以满足问题的时空约束。(G - FCFS) 为初始解 (S) 生成可行的泊位规划,计算每个船只 (v \in \pi_q) 的开始时间 (S_v)、泊位位置 (b_v)、处理时间 (h_v) 和延迟时间 (T_v)。评估方案中,使用上述贪心过程和每次移动后生成的解计算总延迟成本。

1.2 邻域结构

【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)内容概要:本文介绍了基于蒙特卡洛和拉格朗日方法的电动汽车充电站有序充电调度优化方案,重点在于采用分散式优化策略应对分时电价机制下的充电需求管理。通过构建数学模型,结合不确定性因素如用户充电行为和电网负荷波动,利用蒙特卡洛模拟生成大量场景,并运用拉格朗日松弛法对复杂问题进行分解求解,从而实现全局最优或近似最优的充电调度计划。该方法有效降低了电网峰值负荷压力,提升了充电站运营效率与经济效益,同时兼顾用户充电便利性。 适合人群:具备一定电力系统、优化算法和Matlab编程基础的高校研究生、科研人员及从事智能电网、电动汽车相关领域的工程技术人员。 使用场景及目标:①应用于电动汽车充电站的日常运营管理,优化充电负荷分布;②服务于城市智能交通系统规划,提升电网与交通系统的协同水平;③作为学术研究案例,用于验证分散式优化算法在复杂能源系统中的有效性。 阅读建议:建议读者结合Matlab代码实现部分,深入理解蒙特卡洛模拟与拉格朗日松弛法的具体实施步骤,重点关注场景生成、约束处理与迭代收敛过程,以便在实际项目中灵活应用与改进。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值