60、超奇异曲线与Kedlaya算法扩展在密码学中的应用

超奇异曲线与Kedlaya算法扩展在密码学中的应用

在密码学领域,曲线的点数计算以及曲线的安全性是至关重要的研究方向。本文将介绍Kedlaya算法的扩展以及超奇异曲线在密码学中的相关应用。

1. Kedlaya算法扩展的复杂度分析

在对Kedlaya算法扩展进行复杂度分析时,需要做出以下假设:
- 特征 $p$ 是固定的。
- 曲线的参数 $r$ 和 $d$ 是固定的,因此亏格也是固定的。
- 每次需要对两个具有复杂结构(整数上的多项式上的多项式上的截断级数)的元素进行乘法运算时,假设将所有内容打包成大整数,并使用Schönhage的快速乘法算法。两个比特大小为 $N$ 的对象之间的乘法运算假设需要 $O(N^{1 + ε})$ 的时间。

下面是算法各步骤的复杂度分析:
|步骤|复杂度分析|
| ---- | ---- |
|步骤2|需要对 $Z_q$ 中的某些元素应用Frobenius映射。由于 $t$ 是 $P(t)$ 的根,$t^σ$ 也是其根,可通过以 $t^p$ 为初始值的牛顿迭代 $X ← X - P(X)/P’(X)$ 得到 $t^σ$,这只是一个预计算,且成本与算法的其他部分相当。此后,在 $O(n^{3 + ε})$ 时间内可以得到 $Z_q$ 中元素的Frobenius映射。|
|步骤3|是牛顿提升,成本受最后一次迭代成本的常数倍限制。最后一次迭代需要对 $Z_q$ 中系数为多项式(次数为 $d - 1$)上的次数为 $µ$ 的多项式对象进行几次乘法运算。$Z_q$ 中的元素比特大小为 $nν$,因此对象的比特大小为 $nνµd = O(n^{3 + ε})$。所以,最终迭代中需要进行的 $

根据原作 https://pan.quark.cn/s/459657bcfd45 的源码改编 Classic-ML-Methods-Algo 引言 建立这个项目,是为了梳理和总结传统机器学习(Machine Learning)方法(methods)或者算法(algo),和各位同仁相互学习交流. 现在的深度学习本质上来自于传统的神经网络模型,很大程度上是传统机器学习的延续,同时也在不少时候需要结合传统方法来实现. 任何机器学习方法基本的流程结构都是通用的;使用的评价方法也基本通用;使用的一些数学知识也是通用的. 本文在梳理传统机器学习方法算法的同时也会顺便补充这些流程,数学上的知识以供参考. 机器学习 机器学习是人工智能(Artificial Intelligence)的一个分支,也是实现人工智能最重要的手段.区别于传统的基于规则(rule-based)的算法,机器学习可以从数据中获取知识,从而实现规定的任务[Ian Goodfellow and Yoshua Bengio and Aaron Courville的Deep Learning].这些知识可以分为四种: 总结(summarization) 预测(prediction) 估计(estimation) 假想验证(hypothesis testing) 机器学习主要关心的是预测[Varian在Big Data : New Tricks for Econometrics],预测的可以是连续性的输出变量,分类,聚类或者物品之间的有趣关联. 机器学习分类 根据数据配置(setting,是否有标签,可以是连续的也可以是离散的)和任务目标,我们可以将机器学习方法分为四种: 无监督(unsupervised) 训练数据没有给定...
本系统采用微信小程序作为前端交互界面,结合Spring BootVue.js框架实现后端服务及管理后台的构建,形成一套完整的电子商务解决方案。该系统架构支持单一商户独立运营,亦兼容多商户入驻的平台模式,具备高度的灵活性扩展性。 在技术实现上,后端以Java语言为核心,依托Spring Boot框架提供稳定的业务逻辑处理数据接口服务;管理后台采用Vue.js进行开发,实现了直观高效的操作界面;前端微信小程序则为用户提供了便捷的移动端购物体验。整套系统各模块间紧密协作,功能链路完整闭环,已通过严格测试优化,符合商业应用的标准要求。 系统设计注重业务场景的全面覆盖,不仅包含商品展示、交易流程、订单处理等核心电商功能,还集成了会员管理、营销工具、数据统计等辅助模块,能够满足不同规模商户的日常运营需求。其多店铺支持机制允许平台方对入驻商户进行统一管理,同时保障各店铺在品牌展示、商品销售及客户服务方面的独立运作空间。 该解决方案强调代码结构的规范性可维护性,遵循企业级开发标准,确保了系统的长期稳定运行后续功能迭代的可行性。整体而言,这是一套技术选型成熟、架构清晰、功能完备且可直接投入商用的电商平台系统。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值