[JZOJ5052]旅行路线

给定一棵n个节点的树,题目要求统计不同的树链数量,条件是链的长度相同且对应节点的度数相等。通过转换为求字典树中本质不同的子串个数问题,采用后缀自动机(SAM)和Trie数据结构来解决。在处理过程中,可以合并相同儿子节点,最后通过比较每个节点的最大度数与其父节点最大度数的差值来计算子串个数。时间复杂度为O(nlogn)。

题目大意

给定一棵n个节点的树,1是根节点。定义dx表示点x的度数,你需要统计有多少条不同的树链(从点向祖先走的路径)。
两条路径相同当且仅当其长度相同而且对于两条路径各自经过的第i个点xydx=dy

1n105


题目分析

求出d之后可以发现这相当于给定一棵(不严格的)字典树(没有合并相同儿子),要你求本质不同的子串个数。
你可以合并相同儿子之后Trie上建SAM,然后直接用随便一种方法求本质不同的子串个数。当然,在这题,你不一定要合并相同儿子,不过这样子建SAM的话,你最后只能用每个点的max减去其parentmax之和来计算子串个数,因为这样即便是遇到两个意义相同的点,也不会算错。
字符集有点大,使用map来存就好了。
时间复杂度O(nlogn)


代码实现

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cctype>
#include <queue>
#include <map>

using namespace std;

typedef long long LL;

int read()
{
    int x=0,f=1;
    char ch=getchar();
    while (!isdigit(ch)) f=ch=='-'?-1:f,ch=getchar();
    while (isdigit(ch)) x=x*10+ch-'0',ch=getchar();
    return x*f;
}

const int N=100050;
const int S=N<<1;

namespace SAM
{
    struct node
    {
        int prt,len,size;
        map<int,int> nxt;
    }sam[S];

    int root,tot;

    int newnode()
    {
        ++tot,sam[tot].prt=sam[tot].len=sam[tot].size=0,sam[tot].nxt.clear();
        return tot;
    }

    void init(){tot=0,root=newnode();}

    int insert(int c,int lst)
    {
        int np=newnode(),p=lst,q;
        for (sam[np].len=sam[p].len+1,sam[np].size=1;p&&!sam[p].nxt[c];p=sam[p].prt) sam[p].nxt[c]=np;
        if (!p) sam[np].prt=root;
        else if (sam[q=sam[p].nxt[c]].len==sam[p].len+1) sam[np].prt=q;
        else
        {
            int nq=newnode();
            sam[nq].prt=sam[q].prt,sam[nq].size=0,sam[nq].nxt=sam[q].nxt;
            sam[np].prt=sam[q].prt=nq;
            for (sam[nq].len=sam[p].len+1;p&&sam[p].nxt[c]==q;p=sam[p].prt) sam[p].nxt[c]=nq;
        }
        return np;
    }

    LL calc(int x)
    {
        LL ret=0;
        for (int x=1;x<=tot;++x) ret+=sam[x].len-sam[sam[x].prt].len;
        return ret;
    }
};

int d[N],tov[N],nxt[N],last[N],root[N];
queue<int> q;
int n,tot;

void insert(int x,int y){tov[++tot]=y,nxt[tot]=last[x],last[x]=tot;}

void bfs()
{
    int x,i,y;
    for (SAM::init(),q.push(1),root[1]=SAM::insert(d[1],1);!q.empty();)
        for (x=q.front(),q.pop(),i=last[x];i;i=nxt[i])
            q.push(y=tov[i]),root[y]=SAM::insert(d[y],root[x]);
}

int main()
{
    freopen("route.in","r",stdin),freopen("route.out","w",stdout);
    n=read();
    for (int i=1,x,y;i<n;++i) x=read(),y=read(),insert(y,x),++d[x],++d[y];
    bfs(),printf("%lld\n",SAM::calc(SAM::root));
    fclose(stdin),fclose(stdout);
    return 0;
}
### 解题思路 题目要求解决的是一个与图相关的最小覆盖问题,通常在特定条件下可以通过状态压缩动态规划(State Compression Dynamic Programming, SCDP)来高效求解。由于状态压缩的适用条件是状态维度较小(例如K≤10),因此可以利用二进制表示状态集合,从而优化计算过程。 #### 1. 状态表示 - 使用一个整数 `mask` 表示当前选择的点集,其中第 `i` 位为 `1` 表示第 `i` 个节点被选中。 - 定义 `dp[mask]` 表示在选中 `mask` 所代表的点集后,能够覆盖的节点集合。 - 可以通过预处理每个点的邻域信息(包括自身和所有直接连接的点),快速更新状态。 #### 2. 预处理邻域 对于每个节点 `u`,预先计算其邻域范围 `neighbor[u]`,即从该节点出发一步能到达的所有节点集合。这样,在后续的状态转移过程中,可以直接使用这些信息进行合并操作。 #### 3. 状态转移 - 初始化:对每个单独节点 `u`,设置初始状态 `dp[1 << u] = neighbor[u]`。 - 转移规则:对于任意两个状态 `mask1` 和 `mask2`,如果它们没有交集,则可以通过合并这两个状态得到新的状态 `mask = mask1 | mask2`,并更新对应的覆盖范围为 `dp[mask1] ∪ dp[mask2]`。 - 在所有状态生成之后,检查是否某个状态的覆盖范围等于全集(即覆盖了所有节点)。如果是,则记录此时使用的最少节点数量。 #### 4. 最优解提取 遍历所有可能的状态,找出能够覆盖整个图的最小节点数目。 --- ### 时间复杂度分析 - 状态总数为 $ O(2^K) $,其中 `K` 是关键点的数量。 - 每次状态转移需要枚举所有可能的子集组合,复杂度为 $ O(2^K \cdot K^2) $。 - 整体时间复杂度控制在可接受范围内,适用于 `K ≤ 10~20` 的情况。 --- ### 代码实现(状态压缩 DP) ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 25; int neighbor[MAXN]; // 每个节点的邻域 int dp[1 << 20]; // dp[mask] 表示选中的点集合为 mask 时所能覆盖的点集合 int min_nodes; // 最小覆盖点数 void solve(int n, vector<vector<int>>& graph) { // 预处理每个节点的邻域 for (int i = 0; i < n; ++i) { neighbor[i] = (1 << i); // 包括自己 for (int j : graph[i]) { neighbor[i] |= (1 << j); } } // 初始化 dp 数组 memset(dp, 0x3f, sizeof(dp)); for (int i = 0; i < n; ++i) { dp[1 << i] = neighbor[i]; } // 状态转移 for (int mask = 1; mask < (1 << n); ++mask) { if (__builtin_popcount(mask) >= min_nodes) continue; // 剪枝 for (int sub = mask & (mask - 1); sub; sub = (sub - 1) & mask) { int comp = mask ^ sub; if (comp == 0) continue; int new_mask = mask; int covered = dp[sub] | dp[comp]; if (covered == (1 << n) - 1) { min_nodes = min(min_nodes, __builtin_popcount(new_mask)); } dp[new_mask] = min(dp[new_mask], covered); } } } int main() { int n, m; cin >> n >> m; vector<vector<int>> graph(n); for (int i = 0; i < m; ++i) { int u, v; cin >> u >> v; graph[u].push_back(v); graph[v].push_back(u); // 无向图 } min_nodes = n; solve(n, graph); cout << "Minimum nodes required: " << min_nodes << endl; return 0; } ``` --- ### 优化策略 - **剪枝**:当当前状态所用节点数已经超过已知最优解时,跳过后续计算。 - **提前终止**:一旦发现某个状态覆盖了全部节点,并且节点数达到理论下限,即可提前结束程序。 - **空间优化**:可以仅保存当前轮次的状态,减少内存占用。 --- ### 总结 本题通过状态压缩动态规划的方法,将原本指数级复杂度的问题压缩到可接受范围内。结合位运算技巧和预处理机制,能够高效地完成状态转移和覆盖判断操作。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值