Given a collection of intervals, find the minimum number of intervals you need to remove to make the rest of the intervals non-overlapping.
Note:
- You may assume the interval's end point is always bigger than its start point.
- Intervals like [1,2] and [2,3] have borders "touching" but they don't overlap each other.
Example 1:
Input: [ [1,2], [2,3], [3,4], [1,3] ] Output: 1 Explanation: [1,3] can be removed and the rest of intervals are non-overlapping.
Example 2:
Input: [ [1,2], [1,2], [1,2] ] Output: 2 Explanation: You need to remove two [1,2] to make the rest of intervals non-overlapping.
Example 3:
Input: [ [1,2], [2,3] ] Output: 0 Explanation: You don't need to remove any of the intervals since they're already non-overlapping.
这个题一眼看上去还是有点麻烦的,不知道从何入手。但是经过转换以后,就很简单了,和前面一道类似的题完全不同,这不再是一个interval的问题了,实际上就是一个活动选择问题(典型的贪心算法入门问题)。
思路:
这个题可以转化为:给定一些任务,以及它们的开始时间和结束时间。并且给定一段时间,尽可能安排多的任务(具体可见《算法导论 第三版》16.1 活动选择问题)。因此,我们首先将这些intervals按end升序排序,相同的end按照start升序排序。
很容易想到,我们希望尽可能的安排比较早结束的任务(也就是end比较小的),然后是考虑start紧跟上一个end的任务,这些任务同样是要满足end尽可能小的原则,依次类推。
因此,在我们排序以后,正好可以满以上的排序要求,很容易一次遍历得到结果。最后,总任务数量,减去排好的任务,就是要删除的任务。
代码如下,复杂度大致为O(nlogn)+O(n)=O(nlogn):
/**
* Definition for an interval.
* public class Interval {
* int start;
* int end;
* Interval() { start = 0; end = 0; }
* Interval(int s, int e) { start = s; end = e; }
* }
*/
public class Solution {
public int eraseOverlapIntervals(Interval[] intervals) {
if (intervals.length < 1) {
return 0;
}
Arrays.sort(intervals, new Comparator<Interval>() {
@Override
public int compare(Interval o1, Interval o2) {
if (o1.end == o2.end) {
return o1.start - o2.start;
} else {
return o1.end - o2.end;
}
}
});
int nInsert = 1;
int nLastEnd = intervals[0].end;
for (Interval interval : intervals) {
if (interval.start >= nLastEnd) {
nLastEnd = interval.end;
nInsert++;
}
}
return intervals.length - nInsert;
}
}