POJ1050 To the Max

本文介绍了一种解决二维数组中寻找最大子矩阵和的方法。通过将二维问题转化为一维最大子数组和问题,利用动态规划思想实现高效求解。文章提供了完整的代码示例并分析了关键算法细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description
Given a two-dimensional array of positive and negative integers,
a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array.
The sum of a rectangle is the sum of all the elements in that rectangle.
In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:

9 2
-4 1
-1 8
and has a sum of 15.

Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output
Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4  1 -1

8  0 -2

Sample Output

15

Source



题目大意:求矩阵的最大子矩阵。

思路: 实质是求 一维数组的最大子段和的问题。     将矩阵压缩成一维数组,求其最大字段和。


先附一段错误的最大子段和代码:

int fun(int* temp,int n){
	int maxx = -127;
	int sum = 0;
	for(int i = 0 ; i < n ; i ++){
		sum += temp[i];
		if(sum > 0)
			maxx = max(sum,maxx);
		else
			sum = temp[i];
	}
	return maxx;
}

这段代码错在,不论前面的段和是否为正,都无条件的加了当前元素(dp[n-1]+temp[i]) ,

如果dp[i-1] < 0 ,此时段和应该停止,不应该加到当前元素上。




正确fun函数:

int fun(int* temp, int n) {
	int maxx = -127;
	int sum = 0;
	for (int i = 0; i < n; i++) {
		if (sum > 0)
			sum += temp[i];
		else
			sum = temp[i];
		maxx = max(sum, maxx);
	}
	return maxx;
}

其中   sum = temp[i], 当 前面的段小于0,舍去,从当前开始。

极端化思想,如果整个数组都为负数,那么子段就是每一个单独的元素。


关键点是段和为负就重新开始。

8 -9 -10

8+(-9) = -1 此时的段应该截止, 从-10开始又是一个新的段。



完整AC代码:

#include <iostream>
#include <cstdio>
#include <string>
#include <vector>
#include <algorithm>
#include <set>
#include <map>
#include <iterator>
#include <cmath>
#include <memory.h>
#include <cstdlib>
#include <ctime>
using namespace std;

#define _for(i,a,b) for(int i = (a) ; i < (b) ; i ++)
const int MAXN = 110;
int grade[MAXN][MAXN];
int ans;
int n;

//把矩阵压缩成一维数组 , 转换成求最大子段和的问题。
int fun(int* temp) {
	int maxx = -127;
	int sum = 0;
	for (int i = 0; i < n; i++) {
		if (sum > 0)
			sum += temp[i];
		else
			sum = temp[i];
		maxx = max(sum, maxx);
	}
	return maxx;
}
int solve() {
        int temp[MAXN];            //保存压缩矩阵的数组
	int maxx = -127;
	for (int i = 0; i < n; i++) {
                
		memset(temp, 0, sizeof(temp));
		for (int j = i; j < n; j++) {

			for (int k = 0; k < n; k++)
				temp[k] += grade[j][k];
			int sum = fun(temp);

			if (sum > maxx)
				maxx = sum;
		}
	}
	return maxx;
}
int main() {

	memset(grade, 0, sizeof(grade));
	cin >> n;
	_for(i, 0, n) {
		_for(j, 0, n)
			cin >> grade[i][j];
	}
	int ans = solve();
	cout << ans << endl;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值