Description
Given a two-dimensional array of positive and negative integers,
a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array.
The sum of a rectangle is the sum of all the elements in that rectangle.
In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Sample Output
15
Source
题目大意:求矩阵的最大子矩阵。
思路: 实质是求 一维数组的最大子段和的问题。 将矩阵压缩成一维数组,求其最大字段和。
先附一段错误的最大子段和代码:
int fun(int* temp,int n){
int maxx = -127;
int sum = 0;
for(int i = 0 ; i < n ; i ++){
sum += temp[i];
if(sum > 0)
maxx = max(sum,maxx);
else
sum = temp[i];
}
return maxx;
}
这段代码错在,不论前面的段和是否为正,都无条件的加了当前元素(dp[n-1]+temp[i]) ,
如果dp[i-1] < 0 ,此时段和应该停止,不应该加到当前元素上。
正确fun函数:
int fun(int* temp, int n) {
int maxx = -127;
int sum = 0;
for (int i = 0; i < n; i++) {
if (sum > 0)
sum += temp[i];
else
sum = temp[i];
maxx = max(sum, maxx);
}
return maxx;
}
其中 sum = temp[i], 当 前面的段小于0,舍去,从当前开始。
极端化思想,如果整个数组都为负数,那么子段就是每一个单独的元素。
关键点是段和为负就重新开始。
8 -9 -10
8+(-9) = -1 此时的段应该截止, 从-10开始又是一个新的段。
完整AC代码:
#include <iostream>
#include <cstdio>
#include <string>
#include <vector>
#include <algorithm>
#include <set>
#include <map>
#include <iterator>
#include <cmath>
#include <memory.h>
#include <cstdlib>
#include <ctime>
using namespace std;
#define _for(i,a,b) for(int i = (a) ; i < (b) ; i ++)
const int MAXN = 110;
int grade[MAXN][MAXN];
int ans;
int n;
//把矩阵压缩成一维数组 , 转换成求最大子段和的问题。
int fun(int* temp) {
int maxx = -127;
int sum = 0;
for (int i = 0; i < n; i++) {
if (sum > 0)
sum += temp[i];
else
sum = temp[i];
maxx = max(sum, maxx);
}
return maxx;
}
int solve() {
int temp[MAXN]; //保存压缩矩阵的数组
int maxx = -127;
for (int i = 0; i < n; i++) {
memset(temp, 0, sizeof(temp));
for (int j = i; j < n; j++) {
for (int k = 0; k < n; k++)
temp[k] += grade[j][k];
int sum = fun(temp);
if (sum > maxx)
maxx = sum;
}
}
return maxx;
}
int main() {
memset(grade, 0, sizeof(grade));
cin >> n;
_for(i, 0, n) {
_for(j, 0, n)
cin >> grade[i][j];
}
int ans = solve();
cout << ans << endl;
}