2017 ACM Arabella Collegiate Programming Contest Competitive Seagulls

本文介绍了一种基于方格的博弈论游戏,玩家通过特定规则将白色方格染成黑色来争夺胜利。文章分析了最优策略,并给出了简洁的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Competitive Seagulls
time limit per test
1.0 s
memory limit per test
256 MB
input
standard input
output
standard output

There are two seagulls playing a very peculiar game. First they line up N unit squares in a line, all originally colored white.

Let L be the length of the longest continuous sub-segment of white unit squares. Let P be any prime that satisfies the condition that . The player can choose any P if it satisfies the conditions but if there is no value of P that does, then P is set to 1.

The current player then proceeds to choose any continuous sub-segment of white unit squares of length P and paint them black. The player who can’t make a move loses.

If both players play optimally and the first player starts, which player is going to win the game?

Input

The first line of input is T – the number of test cases.

Each test case contains a line with a single integer N (1 ≤ N ≤ 107).

Output

For each test case, output on a single line "first" (without quotes) if the first player would win the game, or "second" if the second would win.

Example
input
2
2
5
output
second
first

题意:给你一个长度为n的方格,方格上面都被染色成了白色。每次染色都是选择白色的,假设目前选择的这块白色(白色联通块)的长度为L,每次都只能选择 <= (L + 1) / 2的素数染色。两个人轮流把这些方格染成黑色,把最后一格染黑的人获胜。问最后谁获胜

解题思路:这题其实和质数并没有关系。当n为偶数的时候,只需要先手取最中间两个,然后和后手对称取就能赢了,所以n>2且为偶数时,先手获胜。当n为奇数的时候,只需要先手取最中间三个,然后和对手对称取就能赢了,所以n>3且为奇数时,先手获胜。当n = 1时,先手获胜。当n = 2时,后手获胜。当n = 3时,后手获胜。


#include <iostream>  
#include <cstdio>  
#include <cstring>  
#include <string>  
#include <algorithm>  
#include <cmath>  
#include <map>  
#include <set>  
#include <stack>  
#include <queue>  
#include <vector>  
#include <bitset>  
#include <functional>  

using namespace std;

#define LL long long  
const int INF = 0x3f3f3f3f;

int main()
{
	int t, n;
	scanf("%d", &t);
	while (t--)
	{
		scanf("%d", &n);
		if (n == 2 || n == 3) printf("second\n");
		else printf("first\n");
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值