Pandaland
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 212 Accepted Submission(s): 39
Problem Description
Mr. Panda lives in Pandaland. There are many cities in Pandaland. Each city can be treated as a point on a 2D plane. Different cities are located in different locations.
There are also M bidirectional roads connecting those cities. There is no intersection between two distinct roads except their endpoints. Besides, each road has a cost w.
One day, Mr. Panda wants to find a simple cycle with minmal cost in the Pandaland. To clarify, a simple cycle is a path which starts and ends on the same city and visits each road at most once.
The cost of a cycle is the sum of the costs of all the roads it contains.
There are also M bidirectional roads connecting those cities. There is no intersection between two distinct roads except their endpoints. Besides, each road has a cost w.
One day, Mr. Panda wants to find a simple cycle with minmal cost in the Pandaland. To clarify, a simple cycle is a path which starts and ends on the same city and visits each road at most once.
The cost of a cycle is the sum of the costs of all the roads it contains.
Input
The first line of the input gives the number of test cases, T. T test cases follow.
Each test case begins with an integer M.
Following M lines discribes roads in Pandaland.
Each line has 5 integers x1,y1,x2,y2, w, representing there is a road with cost w connecting the cities on (x1,y1) and (x2,y2).
Each test case begins with an integer M.
Following M lines discribes roads in Pandaland.
Each line has 5 integers x1,y1,x2,y2, w, representing there is a road with cost w connecting the cities on (x1,y1) and (x2,y2).
Output
For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1) and y is the cost Mr. Panda wants to know.
If there is no cycles in the map, y is 0.
∙1≤T≤50.
∙1≤m≤4000.
∙−10000≤xi,yi≤10000.
∙1≤w≤105.
If there is no cycles in the map, y is 0.
limits
∙1≤T≤50.
∙1≤m≤4000.
∙−10000≤xi,yi≤10000.
∙1≤w≤105.
Sample Input
2 5 0 0 0 1 2 0 0 1 0 2 0 1 1 1 2 1 0 1 1 2 1 0 0 1 5 9 1 1 3 1 1 1 1 1 3 2 3 1 3 3 2 1 3 3 3 1 1 1 2 2 2 2 2 3 3 3 3 1 2 2 1 2 2 1 3 2 4 1 5 1 4
Sample Output
Case #1: 8 Case #2: 4
Source
Recommend
jiangzijing2015
题意:给你一个m 个边的无向图,要求在图上找一个最小的环(边权)
解题思路:直接暴力枚举哪一个边。然后跑这两个点的最短路即可,Dijkstra时不跑这条边。加上这个边的权值即是这个最小环。(加个剪枝:当优先队列中的最小值大于等于ans 时直接不跑了)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <cmath>
using namespace std;
#define LL long long
const int INF=0x3f3f3f3f;
int s[8005],nt[8005],e[8005],w[8005];
int u[4005],v[4005],l[4005];
int m,x,y,xx,yy,ww;
map<pair<int,int>,int>mp;
int dis[8005],visit[8005],mi;
struct node
{
int id,l;
friend bool operator<(node a,node b)
{
return a.l>b.l;
}
} pre,nt1;
void Dijkstra(int ss,int ee)
{
memset(dis,INF,sizeof dis);
memset(visit,0,sizeof visit);
dis[ss]=0;
pre.id=ss,pre.l=0;
priority_queue<node>q;
q.push(pre);
while(!q.empty())
{
pre=q.top();
q.pop();
visit[pre.id]=1;
if(pre.l>mi) break;
for(int i=s[pre.id]; ~i; i=nt[i])
{
int v=e[i];
if((pre.id==ss&&ee==v)||(pre.id==ee&&ss==v)||visit[v]) continue;
if(dis[v]>dis[pre.id]+w[i])
{
dis[v]=dis[pre.id]+w[i];
nt1.id=v;
nt1.l=dis[v];
q.push(nt1);
}
}
}
}
int main()
{
int t,cas=0;
scanf("%d",&t);
while(t--)
{
printf("Case #%d: ",++cas);
scanf("%d",&m);
memset(s,-1,sizeof s);
int res=1,cnt=1;
mp.clear();
for(int i=1; i<=m; i++)
{
scanf("%d%d%d%d%d",&x,&y,&xx,&yy,&ww);
if(!mp[make_pair(x,y)]) mp[make_pair(x,y)]=res++;
if(!mp[make_pair(xx,yy)]) mp[make_pair(xx,yy)]=res++;
int a=mp[make_pair(x,y)],b=mp[make_pair(xx,yy)];
u[i]=a,v[i]=b,l[i]=ww;
nt[cnt]=s[a],s[a]=cnt,e[cnt]=b,w[cnt++]=ww;
nt[cnt]=s[b],s[b]=cnt,e[cnt]=a,w[cnt++]=ww;
}
mi=INF;
for(int i=1; i<=m; i++)
{
Dijkstra(u[i],v[i]);
if(dis[v[i]]!=INF) mi=min(mi,dis[v[i]]+l[i]);
}
if(mi==INF) printf("0\n");
else printf("%d\n",mi);
}
return 0;
}