Codeforces 743D-Chloe and pleasant prizes

本文介绍了一种通过DFS+DP算法解决两个参与者如何在不冲突的情况下从构成圣诞树形状的奖品中选取奖品的问题,旨在使两者的奖品愉悦值总和最大化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Chloe and pleasant prizes
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Generous sponsors of the olympiad in which Chloe and Vladik took part allowed all the participants to choose a prize for them on their own. Christmas is coming, so sponsors decided to decorate the Christmas tree with their prizes.

They took n prizes for the contestants and wrote on each of them a unique id (integer from 1 to n). A gift i is characterized by integer ai — pleasantness of the gift. The pleasantness of the gift can be positive, negative or zero. Sponsors placed the gift 1 on the top of the tree. All the other gifts hung on a rope tied to some other gift so that each gift hung on the first gift, possibly with a sequence of ropes and another gifts. Formally, the gifts formed a rooted tree with n vertices.

The prize-giving procedure goes in the following way: the participants come to the tree one after another, choose any of the remaining gifts and cut the rope this prize hang on. Note that all the ropes which were used to hang other prizes on the chosen one are not cut. So the contestant gets the chosen gift as well as the all the gifts that hang on it, possibly with a sequence of ropes and another gifts.

Our friends, Chloe and Vladik, shared the first place on the olympiad and they will choose prizes at the same time! To keep themselves from fighting, they decided to choose two different gifts so that the sets of the gifts that hang on them with a sequence of ropes and another gifts don't intersect. In other words, there shouldn't be any gift that hang both on the gift chosen by Chloe and on the gift chosen by Vladik. From all of the possible variants they will choose such pair of prizes that the sum of pleasantness of all the gifts that they will take after cutting the ropes is as large as possible.

Print the maximum sum of pleasantness that Vladik and Chloe can get. If it is impossible for them to choose the gifts without fighting, print Impossible.

Input

The first line contains a single integer n (1 ≤ n ≤ 2·105) — the number of gifts.

The next line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109) — the pleasantness of the gifts.

The next (n - 1) lines contain two numbers each. The i-th of these lines contains integers ui and vi (1 ≤ ui, vi ≤ nui ≠ vi) — the description of the tree's edges. It means that gifts with numbers ui and vi are connected to each other with a rope. The gifts' ids in the description of the ropes can be given in arbirtary order: vi hangs on ui or ui hangs on vi.

It is guaranteed that all the gifts hang on the first gift, possibly with a sequence of ropes and another gifts.

Output

If it is possible for Chloe and Vladik to choose prizes without fighting, print single integer — the maximum possible sum of pleasantness they can get together.

Otherwise print Impossible.

Examples
input
8
0 5 -1 4 3 2 6 5
1 2
2 4
2 5
1 3
3 6
6 7
6 8
output
25
input
4
1 -5 1 1
1 2
1 4
2 3
output
2
input
1
-1
output
Impossible
       题意:有n个奖品,奖品被装饰成圣诞树。第i个礼物有a[i]的愉悦值,礼物的愉悦值可以是正的,负的或零。礼物1放在树的顶部,用n-1根绳子将所有礼物连接起来。有两个人同时选择礼物,选择礼物时剪断绳子则该绳子一下的礼物则归一人所有。为了避免战斗,他们会选择不同的礼物,并且保证两人所选的所有礼物愉悦值之和最大。如果不可能选择礼物时不发生战斗,则输出“Impossible”

解题思路:dfs+dp,dfs求出每个子树的权值,dp[x]表示x节点以下(包括x节点)的子树中子树和最大的子树的和

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <stack>
#include <queue>
#include <vector>
#include <map>

using namespace std;

#define ll long long
const ll INF=0x3f3f3f3f3f3f3f3f;
ll a[200010],ans,dp[200010];
vector<int>G[200010];
int n;

ll dfs(int x,int f)
{
    int Size=G[x].size();
    ll sum=a[x];
    dp[x]=-INF;
    for(int i=0;i<Size;i++)
    {
        int y=G[x][i];
        if(y==f) continue;
        ll t=dfs(y,x);
        sum+=t;
        if(dp[x]!=-INF) ans=max(ans,dp[y]+dp[x]);
        dp[x]=max(dp[x],dp[y]);
    }
    dp[x]=max(dp[x],sum);
    return sum;
}

int main()
{
    while(~scanf("%d",&n))
    {
        ans=-INF;
        for(int i=1;i<=n;i++)
            scanf("%lld",&a[i]);
        int x,y;
        for(int i=1;i<=n-1;i++)
        {
            scanf("%d %d",&x,&y);
            G[x].push_back(y);
            G[y].push_back(x);
        }
        ll sum=dfs(1,-1);
        if(ans==-INF) printf("Impossible\n");
        else printf("%lld\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值