关键词:光伏功率预测、光伏短期预测、光伏短临预测、云图预测、卫星云图、云移估计、云团运动、云边效应、辐照预测、Nowcasting、云图特征提取、光流法 Optical Flow、相关匹配、U-Net 分割、CNN-LSTM、Transformer、概率预测 P10/P50/P90、ramp 预警、爬坡预测、数据工程方案
光伏功率预测在晴天往往很准,但一旦进入多云、云团快速变化的天气,“云一来就跳”的问题几乎普遍存在。其根本原因是:传统短期预测输入缺少“云团从哪里来、往哪里走、移动多快、云厚怎么变”的关键信息。
因此,光伏短期/短临预测(0–2 小时 Nowcasting)的主流工程路线,通常离不开两件事:
-
云图特征提取:从卫星云图中提取云量、云厚、云边界、云纹理等特征
-
云移估计:估计云团运动矢量场(方向、速度),推演未来遮挡演化
本文给出一套可落地的工程方案:从数据接入、预处理、云移估计、特征构造、功率映射、概率输出到系统监控,尽量讲清楚“怎么做、做什么、为什么这样做”。
1. 目标定义:我们到底要解决什么短期问题?
在“光伏短期预测”里,必须先明确输出目标,否则模型很容易“看起来能拟合,实际不可用”。
1.1 建议的输出体系(工程可用)
-
P50 点预测功率:未来 5/15 分钟到 2 小时的曲线
-
P10/P90 概率区间:给调度与储能做风险边界
-
ramp 风险:未来 15–60 分钟是否发生突降/突升(概率 + 幅度 + 时间窗)
-
confidence 可信度:云图缺失、遮挡不确定性高时自动保守
关键词提示:把“光伏功率预测”做成“调度可用”的短临系统,必须从点预测升级到“区间 + 事件”。
2. 数据层:云图是什么?选哪些云图更适合光伏短临?
2.1 常用云图数据源(按工程常见程度)
-
地球静止卫星(GEO):连续、高频(5–15 分钟),适合短临
-
多光谱通道:可见光、红外、短波红外、水汽通道等
-
云产品(若供应方提供):云量 Cloud Fraction、云顶温度、云相态、云光学厚度(COT)、云顶高度等
短临最关键是“频率”和“空间连续性”,因此 GEO 更合适。
2.2 云图需要的基础配置
-
时间分辨率:最好 ≤10min(15min 也可做,但对云边效应会迟钝)
-
空间分辨率:越高越好,但要平衡成本与计算(1–5km 常见)
-
覆盖范围:至少覆盖电站周边 50–200km(取决于云速与预测时长)
经验:预测 1 小时,常需要覆盖上游 50–150km;预测 2 小时则更大。
3. 预处理:让云图“对齐到电站”,否则后面全是伪信号
云图算法的最大隐患之一是:几何对齐与时间对齐不严谨,导致云移估计产生伪速度。
3.1 时间对齐
-
确定云图的采集时刻(观测有效时刻)
-
将功率序列按同一时间基准对齐(时区、延迟、窗口平均)
3.2 空间投影与裁剪
-
云图通常是经纬度网格或投影坐标,需要统一到同一投影体系
-
以电站中心(或站内多个子阵列中心)为基准裁剪 ROI
-
ROI 大小建议按预测时长自适应(上游覆盖)
3.3 辐射定标/归一化(可选但强烈建议)
-
不同季节、太阳高度角变化会导致可见光亮度分布变化
-
如果直接用原始亮度做特征,模型会把“太阳高度角变化”当成云变化
-
建议引入:太阳高度角/方位角作为辅助特征,或做通道归一化
4. 云图特征提取:从“像素”到“可用特征”的三层结构
工程上推荐“三层特征”组合,而不是只用一个 CNN 黑盒。
4.1 第一层:物理/统计特征(低成本、可解释)
从云产品或云图通道直接构造:
-
云量(Cloud Cover)
-
云顶温度(IR)
-
云光学厚度(COT)或云反照率代理
-
ROI 内均值/方差/分位数(P10/P50/P90)
-
云边界强度(梯度幅值统计)
-
“遮挡指数” proxy:电站 ROI 内高云像素占比
优势:可解释、鲁棒、易监控,适合做基线与回退。
4.2 第二层:结构特征(形态学/纹理)
对云图做分割或边缘提取,提取:
-
云团连通域数量、面积、周长
-
云边界长度、边缘方向分布
-
纹理特征(GLCM 等,或简化的频域能量)
这些特征非常适合解释“云边效应”和“碎云导致的快速波动”。
4.3 第三层:深度特征(CNN/ViT)
用 CNN/ViT 对云图序列编码,输出 embedding:
-
单帧 CNN(ResNet/U-Net encoder)
-
时序 CNN(3D CNN)
-
CNN + Transformer(时空编码)
建议:深度特征别单独用,最好与第一层/第二层拼接融合,提高稳健性与可解释性。
5. 云移估计:短临预测的“发动机”(两类主流路线)
云移估计的目的:得到云团运动矢量场 V(x,y),用于把当前云图推演到未来。
路线A:光流法 Optical Flow(通用强、工程成熟)
-
Lucas–Kanade(稀疏光流)
-
Farnebäck(稠密光流)
-
TV-L1(鲁棒、适合光照变化)
-
深度光流(RAFT 等,效果强但成本高)
输出:像素级速度矢量场(dx/dt, dy/dt)
工程注意点:
-
云图亮度变化不全来自运动,云厚变化会干扰光流
-
需要做通道选择(红外云顶温度通道通常更稳定)
-
需要对矢量场做平滑与异常剔除(避免局部噪声速度爆炸)
路线B:相关匹配/块匹配 Cross-correlation(更可控、更易解释)
做法:
-
将 ROI 分成多个块
-
计算相邻两帧的相关系数最大位移
-
得到每块的位移向量
优势:
-
解释性强
-
对噪声更稳(若配合多尺度)
-
易于做质量评分(相关峰值强度)
推荐实践:
-
多尺度金字塔(粗到细)
-
相关峰值 < 阈值 → 判为不可信区域
-
对不可信区域使用邻域插值或回退全局风场
6. 云图推演与遮挡预测:从“云在动”到“辐照会怎么变”
拿到云移矢量场后,下一步通常是:
-
对云图(或云产品)做平流推演(advection)
-
得到未来 5/15/30/60 分钟的“云覆盖演化”
关键工程点:云不仅移动,还会发展/消散(云厚变化)。因此建议:
-
运动项:由云移矢量场驱动
-
强度项:用简单的增长/衰减模型或残差学习(学习云厚变化趋势)
如果有多通道(如红外云顶温度 + 可见光),可以更好区分“云移动”和“云厚变化”。
7. 从云到功率:两阶段映射比“一步到位”更稳
工程上最推荐的方式不是“云图直接预测功率”,而是:
7.1 阶段1:云 → 辐照(或等效辐照)
先预测未来辐照(GHI/DNI 或等效辐照):
-
云覆盖、云厚、太阳高度角 → 辐照变化
-
云边界强度 → 辐照波动增强风险
7.2 阶段2:辐照 → 功率(结合温度与设备状态)
再用电站侧模型做功率映射:
-
温度影响效率
-
逆变器削顶(clipping)导致非线性饱和
-
可用容量变化(AvailCap)决定上限
这样做的好处:
-
物理一致性更好
-
更容易解释与验收
-
设备状态变化不至于“污染云图模型”
8. 概率预测与 ramp 事件:短临必须“风险化输出”
8.1 为什么要 P10/P90?
云变天的不确定性极高,点预测再准也会在某些天崩。
区间预测能直接服务:
-
备用配置
-
储能 SOC 预留
-
风险提示(confidence)
实现方法(工程可落地):
-
分位数回归(Pinball loss)输出 P10/P50/P90
-
或用集合方法(多模型/多初始化/多气象扰动)构造分布
8.2 ramp 预警(爬坡预测)
短临最值钱的是提前识别“突降/突升”窗口:
输出建议包括:
-
ramp_prob:未来 15–60 分钟发生突降/突升概率
-
ramp_amp:幅度区间
-
ramp_t0:预计触发时刻
-
lead_time:提前量(用于评估系统价值)
9. 系统工程:可用性比最优精度更重要(监控与回退必须有)
短临系统真实运行一定会遇到:
-
云图延迟、缺帧、断流
-
夜间可见光不可用(需用红外或直接切到 NWP/功率基线)
-
极端对流云快速发展(运动估计不稳定)
因此必须内置三类机制:
9.1 数据质量监控
-
云图到达延迟
-
缺帧率
-
ROI 裁剪是否异常
-
云移估计质量评分(光流一致性/相关峰值)
9.2 置信度输出
当质量评分下降时:
-
自动扩大区间(更保守)
-
降低点预测权重
-
提醒调度“当前不确定性高”
9.3 回退策略(Fallback)
-
云图不可用 → 回退到功率持久性 + NWP 短期修正
-
云移不可信 → 回退全局运动(平均矢量)或多源融合
-
夜间/低太阳高度角 → 以物理模型与历史形态为主
10. 验收指标:别只看 nRMSE,要看短临“事件价值”
建议短临至少验收:
-
关键时段误差(多云窗口)
-
ramp 命中率、提前量、幅度误差
-
P10/P90 覆盖率与区间宽度
-
峰值/谷值偏差与发生时刻偏差
对光伏短期预测来说,“ramp 提前量”通常比“全天 nRMSE”更能体现价值。
Q1:为什么晴天光伏功率预测很准,多云就不准?
A:多云本质是空间传播问题。缺少卫星云图与云移估计时,模型只能用历史功率外推,必然滞后且容易失效。
Q2:云移估计用光流还是相关匹配更好?
A:光流更通用、细节更丰富;相关匹配更稳、更可解释。工程上常用“相关匹配做基线 + 光流做增强”,再做质量评分与回退。
Q3:云图模型能直接预测功率吗?
A:可以,但更推荐“云→辐照→功率”的两阶段方案,更符合物理一致性,也更利于处理逆变器削顶、可用容量等工程因素。
结语:光伏短期预测要想“云一来不跳”,关键是把云当成“可运动的空间系统”
真正可落地的光伏短临预测体系,通常具备:
-
卫星云图(高频)接入
-
云图特征提取(物理 + 结构 + 深度)
-
云移估计(光流/相关匹配 + 质量评分)
-
平流推演 + 强度变化修正
-
两阶段映射(云→辐照→功率)
-
概率区间输出 + ramp 预警
-
监控与回退机制
做到这些,“云一来就跳”才能从根上被解决,预测系统才能真正服务调度、储能与交易。
-
光伏短临预测方案
-
卫星云图 Nowcasting
-
云移估计 光流法
-
云团运动 辐照预测
-
云图特征提取 U-Net
-
ramp 预警 爬坡预测
-
P10 P50 P90 概率预测
378

被折叠的 条评论
为什么被折叠?



