Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1’s in their binary representation and return them as an array.
Example:
For num = 5 you should return [0,1,1,2,1,2].
Follow up:
It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
Space complexity should be O(n).
Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
解题思路:二进制是一个非常特殊的运算,使用位运算,统计1的个数。
c++:
class Solution {
public:
vector<int> countBits(int num) {
std::vector<int> v;
for(int i=0;i<=num;i++){
bitset<32> num(i);//使用bitset<32> 可以进行位运算
v.push_back(num.count());//将1的个数插入到向量容器中
}
return v;
}
};
java版本:
public class Solution {
public int[] countBits(int num) {
int [] res=new int[num+1];
for(int i=0;i<=num;i++){
res[i]=res[i>>1]+(i&1);//移位进行计算
}
return res;
}
}