Problem
You are given two vectors v1=(x1,x2,...,xn) and v2=(y1,y2,...,yn). The scalar product of these vectors is a single number, calculated as x1y1+x2y2+...+xnyn.
Suppose you are allowed to permute the coordinates of each vector as you wish. Choose two permutations such that the scalar product of your two new vectors is the smallest possible, and output that minimum scalar product.
Input
The first line of the input file contains integer number T - the number of test cases. For each test case, the first line contains integer number n . The next two lines contain n integers each, giving the coordinates of v 1 and v 2 respectively.
Output
For each test case, output a line
Case #X: Ywhere X is the test case number, starting from 1, and Y is the minimum scalar product of all permutations of the two given vectors.
Limits
Small dataset
T = 1000
1 ≤ n ≤ 8
-1000 ≤ xi, yi ≤ 1000
Large dataset
T = 10
100 ≤ n ≤ 800
-100000 ≤ xi, yi ≤ 100000
Sample
<pre name="code" class="cpp">#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <fstream>
using namespace std;
#define SMALL
const int MAX = 800 + 10;
typedef long long Int64;
int Dim, A[MAX], B[MAX];
int main() {
#ifdef SMALL
ifstream infile("Small.txt");
ofstream outfile("Smalloutput.txt");
#endif
#ifdef LARGE
ifstream infile("Large.txt");
ofstream outfile("Largeoutput.txt");
#endif // def
int testCase;
infile >> testCase;
for(int testId = 1; testId <= testCase; ++testId) {
Int64 res = 0;
infile >> Dim;
for(int i = 0; i < Dim; ++i) {
infile >> A[i];
}
for(int i = 0; i < Dim; ++i) {
infile >> B[i];
}
sort(A, A + Dim);
sort(B, B + Dim);
for(int i = 0; i < Dim; ++i) res += (Int64) A[i] * B[Dim - i - 1];
outfile << "Case #"<< testId <<":" <<res << endl;
}
}
改变编译预处理器指令, 分别运行后如下: