FZU - 2275 (KMP)

本文介绍了一个简单的游戏博弈问题,通过KMP算法实现游戏胜负的快速判断。游戏中两名玩家Alice和Bob轮流操作自己的数字,目标是使两个数字相等。文章详细展示了如何使用KMP算法进行比对,并给出了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Alice and Bob is playing a game.

Each of them has a number. Alice’s number is A, and Bob’s number is B.

Each turn, one player can do one of the following actions on his own number:

1. Flip: Flip the number. Suppose X = 123456 and after flip, X = 654321

2. Divide. X = X/10. Attention all the numbers are integer. For example X=123456 , after this action X become 12345(but not 12345.6). 0/0=0.

Alice and Bob moves in turn, Alice moves first. Alice can only modify A, Bob can only modify B. If A=B after any player’s action, then Alice win. Otherwise the game keep going on!

Alice wants to win the game, but Bob will try his best to stop Alice.

Suppose Alice and Bob are clever enough, now Alice wants to know whether she can win the game in limited step or the game will never end.

Input

First line contains an integer T (1 ≤ T ≤ 10), represents there are T test cases.

For each test case: Two number A and B. 0<=A,B<=10^100000.

Output

For each test case, if Alice can win the game, output “Alice”. Otherwise output “Bob”.

Sample Input
4
11111 1
1 11111
12345 54321
123 123
Sample Output
Alice
Bob
Alice
Alice
Hint

For the third sample, Alice flip his number and win the game.

For the last sample, A=B, so Alice win the game immediately even nobody take a move.


1A的一道KMP。虽然很简单,但也激动死我了。。哈哈哈。

思路:

主要是有一个特判,当B串,只有一个,并且是0的时候,一定是Alice 赢。其他就是利用KMP,来进行判断输出了。


代码:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
char a[110000],b[110000],c[110000];
int cnt;
int f[110000];
void find(char *T,char *P,int *f)
{
    int n=strlen(T);
    int m=strlen(P);
    int j=0;
    for(int i=0;i<n;i++)
    {
        if(j && T[i]!=P[j]) j=f[j];
        if(T[i]==P[j]) j++;
        if(j==m) cnt++;
    }
}
void getFail(char *P,int *f)
{
    int m =strlen(P);
    f[0]=f[1]=0;
    for(int i=1;i<m;i++)
    {
        int j=f[i];
        while(j && P[i]!=P[j]) j=f[j];
        f[i+1] = P[i]==P[j]?j+1:0;
    }
}
int work(char *q,char *w,int *e)
{
    cnt=0;
    getFail(w,e);
    find(q,w,e);
    return cnt;
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        cnt=0;
        memset(f,0,sizeof(f));
        memset(c,0,sizeof(c));
        scanf("%s%s",a,b);
        int la=strlen(a);
        int lb=strlen(b);
        if(lb==1&&b[0]=='0')printf("Alice\n");
        else
        {
        if(la<lb)
        {
            printf("Bob\n");
        }
        else
        {
            for(int i=0;i<lb;i++)
            {
                c[i]=b[lb-i-1];
            }
            //cout<<c<<endl;
            int ans1=work(a,b,f);
            memset(f,0,sizeof(f));
            int ans2=work(a,c,f);
            if(ans1||ans2)
            {
                printf("Alice\n");
            }
            else printf("Bob\n");
        }
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值