HDU ~ 4734 ~ F(x) (数位DP)

本文介绍了一种使用记忆化搜索算法解决特定数值范围问题的方法。通过定义dp数组记录子问题状态,避免重复计算,提高了算法效率。该算法用于找出指定区间内满足条件的整数个数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意

T测试数据,每组求[0,B]区间内有多少个数x的F(x)小于F(A),

假设A为一个n位数(A_nA_{n-1}A_{n-2}...A_1),F(A)定义为:F(A)=A_n*2^{n-1}+A_{n-1}*2^{n-2}+A_{n-2}*2^{n-3}+A_1*2^0

思路

依旧记忆化搜索的思路,定义dp[pos][sum]表示选到pos位,后面的F值加和不超过sum的情况。

#include<bits/stdc++.h>
using namespace std;
int dp[10][5000], FA;
string num;
int dfs(int pos, int sum, bool limit)
{
    if (pos == -1) return sum >= 0;
    if (sum < 0) return 0;
    if (!limit && dp[pos][sum] != -1) return dp[pos][sum];
    int E = limit?num[pos]-'0':9, ans = 0;
    for (int i = 0; i <= E; i++)
        ans += dfs(pos-1, sum-i*(1<<pos), limit&&(i==E));
    if (!limit) dp[pos][sum] = ans;
    return ans;
}
int solve(int x)
{
    num = to_string(x); reverse(num.begin(), num.end());
    return dfs(num.size()-1, FA, 1);
}
int main()
{
    memset(dp, -1, sizeof(dp));
    int T, CASE = 1; scanf("%d", &T);
    while (T--)
    {
        int A, B; scanf("%d%d", &A, &B);
        FA = 0;
        num = to_string(A); reverse(num.begin(), num.end());
        for (int i = num.size()-1; i >= 0; i--)
            FA += (num[i]-'0')*(1<<i);
        printf("Case #%d: %d\n", CASE++, solve(B));
    }
    return 0;
}
/*
3
0 100
1 10
5 100
*/

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值