zhx's contest(HDU-5187)(快速幂+快速乘法)

该博客主要介绍了如何利用快速幂和快速乘法解决HDU-5187竞赛问题。博主推导出特定位置的公式,并解析了计算过程,最终得出解决方案为利用快速幂计算公式(2^n - 2 + mod) % mod,以提高算法效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Problem Description

As one of the most powerful brushes, zhx is required to give his juniors n problems.
zhx thinks the ith problem's difficulty is i. He wants to arrange these problems in a beautiful way.
zhx defines a sequence {ai} beautiful if there is an i that matches two rules below:
1: a1..ai are monotone decreasing or monotone increasing.
2: ai..an are monotone decreasing or monotone increasing.
He wants you to tell him that how many permutations of problems are there if the sequence of the problems' difficulty is beautiful.
zhx knows that the answer may be very huge, and you only need to tell him the answer module p.
 

Input
Multiply test cases(less than 1000). Seek EOF as the end of the file.
For each case, there are two integers n and p separated by a space in a line. (1n,p1018)
 

Output
For each test case, output a single line indicating the answer.
 

Sample Input
2 233 3 5
 

Sample Output
2 1
Hint
In the first case, both sequence {1, 2} and {2, 1} are legal. In the second case, sequence {1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1} are legal, so the answer is 6 mod 5 = 1


这题是推公式:

每一个位置其实可以是(a[1]............max..................min)

                                                或者是(max......................min...............a[n])

除了第一个位置和最后位置不符合其他都符合这种情况

其中一种是:2^(n-1)-2

两种是        : 2^(n-1)-2

因为首尾多减了一次    所以要+2

ans=(2^(n-1)-2)×2+2;

        =(2^(n)-2+mod)%mod;

根据公式用快速幂加快速乘法:


#include<stdio.h>
#include<string.h>
typedef long long ll;
ll n,p;
ll qmul(ll a,ll b)
{
     ll ans=0;
     while(b)
     {
          if(b&1)
              ans=(ans+a)%p;
          a=(a*2)%p;
          b>>=1;
     }
     return ans;
}
ll qpow(ll a,ll b)
{
     ll ans=1;
     while(b)
     {
          if(b&1)
              ans=qmul(a,ans);
          a=qmul(a,a);
          b>>=1;
     }
     return ans;
}
int main()
{
     while(scanf("%lld%lld",&n,&p)!=EOF)
     {
         printf("%lld\n",(qpow(2,n)-2+p)%p);
     }
     return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值