阶乘0的个数(结论型)

详细可以看https://www.cnblogs.com/hutonm/p/5624996.html

问题描述
给定参数n(n为正整数),请计算n的阶乘n!末尾所含有“0”的个数。
例如,5!=120,其末尾所含有的“0”的个数为1;10!= 3628800,其末尾所含有的“0”的个数为2;20!= 2432902008176640000,其末尾所含有的“0”的个数为4。


计算公式
这里先给出其计算公式,后面给出推导过程。
令f(x)表示正整数x末尾所含有的“0”的个数,则有:
   当0 < n < 5时,f(n!) = 0;
   当n >= 5时,f(n!) = k + f(k!), 其中 k = n / 5(取整)。


问题分析
显然,对于阶乘这个大数,我们不可能将其结果计算出来,再统计其末尾所含有的“0”的个数。所以必须从其数字特征进行分析。下面我们从因式分解的角度切入分析。


我们先考虑一般的情形。对于任意一个正整数,若对其进行因式分解,那么其末尾的“0”必可以分解为2*5。在这里,每一个“0”必然和一个因子“5”相对应。但请注意,一个数的因式分解中因子“5”不一定对应着一个“0”,因为还需要一个因子“2”,才能实现其一一对应。


我们再回到原先的问题。这里先给出一个结论:
结论1: 对于n的阶乘n!,其因式分解中,如果存在一个因子“5”,那么它必然对应着n!末尾的一个“0”。
下面对这个结论进行证明:
(1)当n < 5时, 结论显然成立。
(2)当n >= 5时,令n!= [5k * 5(k-1) * ... * 10 * 5] * a,其中 n = 5k + r (0 <= r <= 4),a是一个不含因子“5”的整数。
对于序列5k, 5(k-1), ..., 10, 5中每一个数5i(1 <= i <= k),都含有因子“5”,并且在区间(5(i-1),5i)(1 <= i <= k)内存在偶数,也就是说,a中存在一个因子“2”与5i相对应。即,这里的k个因子“5”与n!末尾的k个“0”一一对应。
我们进一步把n!表示为:n!= 5^k * k! * a(公式1),其中5^k表示5的k次方。很容易利用(1)和迭代法,得出结论1。


上面证明了n的阶乘n!末尾的“0”与n!的因式分解中的因子“5”是一一对应的。也就是说,计算n的阶乘n!末尾的“0”的个数,可以转换为计算其因式分解中“5”的个数。


令f(x)表示正整数x末尾所含有的“0”的个数, g(x)表示正整数x的因式分解中因子“5”的个数,则利用上面的的结论1和公式1有:
   f(n!) = g(n!) = g(5^k * k! * a) = k + g(k!) = k + f(k!)
所以,最终的计算公式为:
当0 < n < 5时,f(n!) = 0;
当n >= 5时,f(n!) = k + f(k!), 其中 k = n / 5(取整)。


计算举例
f(5!) = 1 + f(1!) = 1
f(10!) = 2 + f(2!) = 2
f(20!) = 4 + f(4!) = 4
f(100!) = 20 + f(20!) = 20 + 4 + f(4!) = 24
f(1000!) = 200 + f(200!) = 200 + 40 + f(40!) = 240 + 8 + f(8!) = 248 + 1 + f(1) =249

贴上代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9;
int solve(int N){
    int ans=0;
    while(N){
        N/=5;
        ans+=N;
    }
    return ans;
}
int main()
{
    int n,T;
    cin>>T;
    while(T--){
        cin>>n;
        int ans=solve(n);
        cout<<ans<<endl;
    }
    return 0;
}

### 计算阶乘结果中末尾零的数量 计算阶乘结果中末尾零的数量是一个经典算法问题。这个问题的核心在于理解阶乘结果中,末尾的零是由因子 `2` 和 `5` 的配对产生的。由于在任何阶乘中,因子 `2` 总是多于因子 `5`,因此只需要统计阶乘分解质因数后有多少个因子 `5` 即可。 #### 统计因子 `5` 的数量 为了得到阶乘结果中末尾零的数量,可以采用如下方法: 对于给定的一个正整数 \( n \),可以通过不断除以 `5` 来统计其倍数贡献的因子 `5` 数量。具体公式为: \[ \text{zero\_count} = \left\lfloor \frac{n}{5} \right\rfloor + \left\lfloor \frac{n}{5^2} \right\rfloor + \left\lfloor \frac{n}{5^3} \right\rfloor + \cdots \] 直到 \( 5^k > n \) 为止[^1]。 这种方法的时间复杂度为 \( O(\log_5(n)) \),非常高效。 #### 实现代码示例 (Python) 以下是基于上述公式的 Python 实现代码: ```python def count_trailing_zeros_in_factorial(n): zero_count = 0 i = 5 while n >= i: zero_count += n // i i *= 5 return zero_count # 测试函数 print(count_trailing_zeros_in_factorial(10)) # 输出应为 2 ``` 此代码通过循环逐步增加幂次的方式,有效地统计了所有可能的因子 `5` 贡献次数。 #### C# 实现代码示例 如果需要使用 C# 编程语言,则可以根据相同的逻辑编写对应的实现代码: ```csharp using System; class Program { static int CountTrailingZerosInFactorial(int n) { int zeroCount = 0; int i = 5; while (n / i >= 1) { zeroCount += n / i; i *= 5; } return zeroCount; } static void Main() { Console.WriteLine(CountTrailingZerosInFactorial(10)); // 输出应为 2 } } ``` 这段代码同样遵循了统计因子 `5` 的核心思路,并提供了完整的功能实现[^2]。 --- ### 结论 无论是 Java、C# 还是其他编程语言,解决该问题的关键都在于理解和应用统计因子 `5` 的方法。这种高效的解决方案能够快速得出任意大小输入下的阶乘结果中末尾零的数量。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值