Measure Theory (3): set functions

本文探讨了测度论中测度的上下连续性的定义及其性质,包括连续性与σ-加性的相互关系,并给出了相应的引理和定理。此外,通过具体例子说明了测度连续性的必要条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Definitions

μ : C → R + ∪ { ∞ } \mu:\mathcal{C}\to\mathbb{R}_+\cup\{\infty\} μ:CR+{}
DEF

  • μ \mu μ is continuous from below at E if ∀ { E i } i ≥ 1 , E i ∈ C , E n ↑ E \forall \{E_i\}_{i\ge1},E_i \in\mathcal{C}, E_n\uparrow E {Ei}i1,EiC,EnE and
    μ ( E n ) → μ ( E ) \mu(E_n)\to\mu(E) μ(En)μ(E)
  • E n ↑ E E_n\uparrow E EnE means E n ⊆ E n + 1 E_n\subseteq E_{n+1} EnEn+1 and ∪ i ≥ 1 E i = E \cup_{i\ge1}E_i = E i1Ei=E
  • μ ( E n ) → μ ( E ) \mu(E_n)\to\mu(E) μ(En)μ(E) means μ ( E ) = lim ⁡ n → ∞ μ ( E n ) \mu(E)=\lim_{n\to\infty}\mu(E_n) μ(E)=limnμ(En)
  • μ \mu μ is continuous from above at E if ∀ { E i } i ≥ 1 , E i ∈ C , E n ↓ E ,  and  ∃ n 0 , s . t . μ ( E n 0 ) < ∞ \forall \{E_i\}_{i\ge1},E_i \in\mathcal{C}, E_n\downarrow E, \text{ and } \exists n_0, s.t.\mu(E_{n_0})<\infty {Ei}i1,EiC,EnE, and n0,s.t.μ(En0)< and
    μ ( E n ) → μ ( E ) \mu(E_n)\to\mu(E) μ(En)μ(E)
  • E n ↓ E E_n\downarrow E EnE means E n ⊇ E n + 1 E_n\supseteq E_{n+1} EnEn+1 and ∩ i ≥ 1 E i = E \cap_{i\ge1}E_i = E i1Ei=E
  • To illustrate the “finiteness starting from some index condition”, consider E n : = [ n , ∞ ) E_n:=[n,\infty) En:=[n,), then E n ↓ ∅ E_n\downarrow\empty En yet μ ( E n ) ↛ 0 \mu(E_n)\nrightarrow0 μ(En)0

LEMMA A \mathscr{A} A is an algebra, μ \mu μ is additive
(1) μ \mu μ is sigma-additive ⇒ μ \Rightarrow\mu μ is continuous
(2) μ \mu μ is continuous from below ⇒ μ \Rightarrow\mu μ is sigma-additive
(3) μ \mu μ is continuous from above at ∅  and finite  ⇒ μ \empty \text { and finite }\Rightarrow\mu  and finite μ is sigma-additive

Proof:
(1) sigma-additive ⇒ \Rightarrow continuous from below: Suppose ∀ { E i } i ≥ 1 , E i ∈ C , E n ↑ E \forall \{E_i\}_{i\ge1},E_i \in\mathcal{C}, E_n\uparrow E {Ei}i1,EiC,EnE, define F n : = E n \ E n − 1 , n ≥ 2 , F 1 : = E 1 F_n:=E_{n}\backslash E_{n-1},n\ge2, F_1:=E_1 Fn:=En\En1,n2,F1:=E1,
then μ ( E ) = μ ( ∑ i ≥ 1 F i ) = ∑ i ≥ 1 μ ( F i ) = lim ⁡ n → ∞ ∑ i = 1 n μ ( F i ) = lim ⁡ n → ∞ μ ( E n ) \mu(E)=\mu(\sum_{i\ge1}F_i)=\sum_{i\ge1}\mu(F_i)=\lim_{n\to\infty}\sum_{i=1}^n \mu(F_i)=\lim_{n\to\infty}\mu(E_n) μ(E)=μ(i1Fi)=i1μ(Fi)=limni=1nμ(Fi)=limnμ(En)

(1) sigma-additive ⇒ \Rightarrow continuous from above: Suppose ∀ { E i } i ≥ 1 , E i ∈ C , E n ↓ E , μ ( E n 0 ) < ∞ \forall \{E_i\}_{i\ge1},E_i \in\mathcal{C}, E_n\downarrow E,\mu(E_{n_0})<\infty {Ei}i1,EiC,EnE,μ(En0)<
Define G 1 : = E n 0 \ E n 0 + 1 G_1:=E_{n_0}\backslash E_{n_0+1} G1:=En0\En0+1
G k : = E n 0 \ E n 0 + k G_k:=E_{n_0}\backslash E_{n_0+k} Gk:=En0\En0+k
∴ G k ↑ E n 0 \ E \therefore G_k\uparrow E_{n_0}\backslash E GkEn0\E
∴ μ ( G k ) → μ ( E n 0 \ E ) \therefore \mu(G_k)\to\mu(E_{n_0}\backslash E) μ(Gk)μ(En0\E) by continuous from below
So μ ( E n 0 \ E ) = lim ⁡ k → ∞ μ ( E n 0 \ E n 0 + k ) = lim ⁡ k → ∞ μ ( E n 0 ) − μ ( E n 0 + k ) \mu(E_{n_0}\backslash E)=\lim_{k\to\infty}\mu(E_{n_0}\backslash E_{n_0+k}) = \lim_{k\to\infty}\mu(E_{n_0}) - \mu( E_{n_0+k}) μ(En0\E)=limkμ(En0\En0+k)=limkμ(En0)μ(En0+k)

(2): ⇒ μ \Rightarrow\mu μ continuous from below ⇒ μ \Rightarrow\mu μ is sigma-additive
Let E = ∑ i ≥ 1 E i , E , E k ∈ A E = \sum_{i\ge1}E_i, E, E_k \in\mathscr{A} E=i1Ei,E,EkA
Observe that μ ( ∑ i = 1 n E i ) = ∑ i = 1 n μ ( E i ) ≤ μ ( E ) \mu(\sum_{i=1}^nE_i)=\sum_{i=1}^n\mu(E_i)\le\mu(E) μ(i=1nEi)=i=1nμ(Ei)μ(E) so ∑ i ≥ 1 μ ( E i ) ≤ μ ( E ) \sum_{i\ge1}\mu(E_i)\le\mu(E) i1μ(Ei)μ(E) (This holds by additivity)
Let F n = ∑ k = 1 n E i F_n=\sum_{k=1}^nE_i Fn=k=1nEi, then F n ↑ E F_n\uparrow E FnE, by continuous from below, μ ( F n ) ↑ μ ( E ) \mu(F_n)\uparrow \mu(E) μ(Fn)μ(E).
That is μ ( E ) = lim ⁡ n → ∞ μ ( F n ) = lim ⁡ n → ∞ ∑ i = 1 n μ ( E i ) = ∑ i ≥ 1 μ ( E i ) \mu(E)=\lim_{n\to\infty}\mu(F_n)=\lim_{n\to\infty}\sum_{i=1}^n\mu(E_i)=\sum_{i\ge1}\mu(E_i) μ(E)=limnμ(Fn)=limni=1nμ(Ei)=i1μ(Ei) Thus proved the sigma additivity

(3): μ \mu μ is continuous from above at ∅  and finite  ⇒ μ \empty \text { and finite }\Rightarrow\mu  and finite μ is sigma-additive
Proof: μ \mu μ continuous from above at ∅ \empty , μ ( Ω ) < ∞ \mu(\Omega) <\infty μ(Ω)<
Consider E = ∑ i ≥ 1 E i , E , E k ∈ A E = \sum_{i\ge1}E_i, E, E_k \in\mathscr{A} E=i1Ei,E,EkA
Let F n = ∑ i ≥ n E i ∈ A F_n=\sum_{i\ge n}E_i \in\mathscr{A} Fn=inEiA as F n = E \ ( ∑ i = 1 n − 1 E i ) F_n=E\backslash(\sum_{i=1}^{n-1}E_i) Fn=E\(i=1n1Ei)
Since F n ↓ ∅ , μ ( F i ) < ∞ F_n\downarrow\empty, \mu(F_i)<\infty Fn,μ(Fi)< So μ ( F n ) → 0 \mu(F_n)\to0 μ(Fn)0
μ ( E ) = μ ( ∑ k = 1 n E k ∪ ∑ k > n E k ) = ∑ k = 1 n μ ( E k ) + μ ( F n + 1 ) \mu(E)=\mu(\sum_{k=1}^n E_k \cup \sum_{k>n}E_k)=\sum_{k=1}^n\mu(E_k) +\mu(F_{n+1}) μ(E)=μ(k=1nEkk>nEk)=k=1nμ(Ek)+μ(Fn+1) Take limit we get sigma additivity.

Example: Ω = ( 0 , 1 ) ,  element in alebra is of the form  ( a , b ] , 0 ≤ a < b < 1 \Omega=(0,1), \text{ element in alebra is of the form }(a,b], 0\le a<b<1 Ω=(0,1), element in alebra is of the form (a,b],0a<b<1
Define μ ( ( a , b ] ) = ∞  if  a = 0  else  b − a \mu((a,b]) = \infty \text{ if } a=0 \text{ else } b-a μ((a,b])= if a=0 else ba, we have seen μ \mu μ is additive yet not sigma-additive.
39:30 这个example想说明什么?
Why NOT sigma-additive? Because it is NOT finite!
It is not continuous from above. Consider E n ↓ ∅ E_n\downarrow \empty En, E n = ( a n , 1 , b n , 1 ] ∪ ( a n , 2 , b n , 2 ] ∪ . . . ∪ ( a n , k , b n , k ] E_n=(a_{n,1}, b_{n,1}]\cup(a_{n,2}, b_{n,2}]\cup...\cup(a_{n,k}, b_{n,k}] En=(an,1,bn,1](an,2,bn,2]...(an,k,bn,k] with a n , j < a n , j + 1 a_{n,j}<a_{n,j+1} an,j<an,j+1. Then if
(1) a m , 1 > 0 , ∃ m a_{m,1} > 0,\exists m am,1>0,m then μ \mu μ is sigma-additive;
(2) a m , 1 = 0 , ∀ m a_{m,1} = 0,\forall m am,1=0,m

Extension

THM1
S ⊂ S ( Ω ) , μ : S → R + ∪ { ∞ } \mathscr{S}\subset\mathcal{S}(\Omega), \mu:\mathscr{S}\to\mathbb{R}_+\cup\{\infty\} SS(Ω),μ:SR+{} additive
Then ∃ ν : a ( S ) → R + ∪ { ∞ } \exists\nu:a(\mathscr{S})\to\mathbb{R}_+\cup\{\infty\} ν:a(S)R+{}, algebra generated by the semi-algebra, such that ν \nu ν is:

  1. Additive
  2. ν ( A ) = μ ( A ) , ∀ A ∈ S \nu(A)=\mu(A),\forall A\in\mathscr{S} ν(A)=μ(A),AS
  3. If μ 1 , μ 2 : a ( S ) → R + ∪ { ∞ } \mu_1,\mu_2: a(\mathscr{S})\to\mathbb{R}_+\cup\{\infty\} μ1,μ2:a(S)R+{} and μ 1 ( A ) = μ 2 ( A ) , ∀ A ∈ S  and  μ 1 , μ 2  additive  ⇒ μ 1 ( A ) = μ 2 ( A ) , ∀ A ∈ a ( S ) \mu_1(A)=\mu_2(A),\forall A\in\mathscr{S} \text{ and } \mu_1,\mu_2 \text{ additive }\Rightarrow\mu_1(A)=\mu_2(A), \forall A\in a(\mathscr{S}) μ1(A)=μ2(A),AS and μ1,μ2 additive μ1(A)=μ2(A),Aa(S)

Proof: If A ∈ a ( S ) A\in a(\mathscr{S}) Aa(S), algebra generated by semi-algebra, then A = ∑ j = 1 n E j , E j ∈ S A=\sum_{j=1}^nE_j, E_j\in\mathscr{S} A=j=1nEj,EjS [Remark: this is a special property of algebra generated by semi-algebra]
Define ν ( A ) : = ∑ j = 1 n μ ( E j ) \nu(A):=\sum_{j=1}^n\mu(E_j) ν(A):=j=1nμ(Ej) (Because we want ν ( A ) = a d d ∑ j = 1 n ν ( E j ) = e x t e n s i o n ∑ j = 1 n μ ( E j ) \nu(A)=^{add}\sum_{j=1}^n\nu(E_j)=^{extension} \sum_{j=1}^n\mu(E_j) ν(A)=addj=1nν(Ej)=extensionj=1nμ(Ej)

Assertion: 1) ν \nu ν is well-defined 2) ν \nu ν is additive 3) ν \nu ν is unique
For 1): (If A has two representation, does ν \nu ν give the same output?)
If A = ∑ j = 1 n E j = ∑ k = 1 m F k , E j , F k ∈ S A=\sum_{j=1}^nE_j=\sum_{k=1}^mF_k, E_j, F_k\in\mathscr{S} A=j=1nEj=k=1mFk,Ej,FkS
E j ⊆ A = ∑ k = 1 m F k E_j\subseteq A=\sum_{k=1}^mF_k EjA=k=1mFk so E j = E j ∩ ∑ k = 1 m F k = ∑ k = 1 m E j ∩ F k E_j = E_j\cap\sum_{k=1}^mF_k=\sum_{k=1}^m E_j\cap F_k Ej=Ejk=1mFk=k=1mEjFk
So μ ( E j ) = ∑ k = 1 m μ ( E j ∩ F k ) \mu(E_j)=\sum_{k=1}^m \mu(E_j\cap F_k) μ(Ej)=k=1mμ(EjFk)
Therefore, ν ( A ) = ∑ j = 1 n μ ( E j ) = ∑ j = 1 n ∑ k = 1 m μ ( E j ∩ F k ) = s i m i l a r l y ∑ k = 1 m μ ( F k ) \nu(A)=\sum_{j=1}^n \mu(E_j)=\sum_{j=1}^n \sum_{k=1}^m \mu(E_j\cap F_k) =^{similarly}\sum_{k=1}^m \mu(F_k) ν(A)=j=1nμ(Ej)=j=1nk=1mμ(EjFk)=similarlyk=1mμ(Fk)
For 2): If A = ∑ j = 1 m E j , B = ∑ k = 1 m F k A=\sum_{j=1}^m E_j, B=\sum_{k=1}^m F_k A=j=1mEj,B=k=1mFk, where E j , F k ∈ S E_j, F_k\in\mathscr{S} Ej,FkS and A ∩ B = ∅ A\cap B=\empty AB= want to show ν ( A ∪ B ) = ν ( A ) + ν ( B ) \nu(A\cup B)=\nu(A) + \nu(B) ν(AB)=ν(A)+ν(B) [follows from definition]
Also, need to show ν ( A ) = μ ( A ) , ∀ A ∈ S \nu(A)=\mu(A),\forall A\in\mathscr{S} ν(A)=μ(A),AS. [Note A = A , A ∈ S A=A, A\in \mathscr{S} A=A,AS]
For 3): (Uniqueness) ∀ B ∈ a ( S ) \forall B\in a(\mathscr{S}) Ba(S), so B = ∑ j = 1 n E j , E j ∈ S B=\sum_{j=1}^n E_j, E_j\in\mathscr{S} B=j=1nEj,EjS.
μ 1 ( B ) = ∑ j = 1 n μ 1 ( E j ) = ∑ j = 1 n μ 2 ( E j ) = μ 2 ( B ) \mu_1(B)=\sum_{j=1}^n\mu_1(E_j)=\sum_{j=1}^n\mu_2(E_j)=\mu_2(B) μ1(B)=j=1nμ1(Ej)=j=1nμ2(Ej)=μ2(B)

THM2
S ⊂ S ( Ω ) , μ : S → R + ∪ { ∞ } \mathscr{S}\subset\mathcal{S}(\Omega), \mu:\mathscr{S}\to\mathbb{R}_+\cup\{\infty\} SS(Ω),μ:SR+{} σ \sigma σ-additive
Then ∃ ν : a ( S ) → R + ∪ { ∞ } \exists\nu:a(\mathscr{S})\to\mathbb{R}_+\cup\{\infty\} ν:a(S)R+{}, algebra generated by the semi-algebra, such that ν \nu ν is:

  1. σ \sigma σ-additive
  2. ν ( A ) = μ ( A ) , ∀ A ∈ S \nu(A)=\mu(A),\forall A\in\mathscr{S} ν(A)=μ(A),AS
  3. If μ 1 , μ 2 : a ( S ) → R + ∪ { ∞ } \mu_1,\mu_2: a(\mathscr{S})\to\mathbb{R}_+\cup\{\infty\} μ1,μ2:a(S)R+{} and μ 1 ( A ) = μ 2 ( A ) , ∀ A ∈ S  and  μ 1 , μ 2 , σ -additive  ⇒ μ 1 ( A ) = μ 2 ( A ) , ∀ A ∈ a ( S ) \mu_1(A)=\mu_2(A),\forall A\in\mathscr{S} \text{ and } \mu_1,\mu_2, \sigma\text{-additive }\Rightarrow\mu_1(A)=\mu_2(A), \forall A\in a(\mathscr{S}) μ1(A)=μ2(A),AS and μ1,μ2,σ-additive μ1(A)=μ2(A),Aa(S)

A = ∑ j ≥ 1 A j , A , A j ∈ A ( S ) A=\sum_{j\ge1}A_j, A, A_j \in \mathcal{A}(\mathscr{S}) A=j1Aj,A,AjA(S)
WTS ν ( A ) = ∑ j ≥ 1 ν ( A j ) \nu(A)=\sum_{j\ge1}\nu(A_j) ν(A)=j1ν(Aj)
By property, A = ∑ j = 1 n E j , E j ∈ S A=\sum_{j=1}^nE_j, E_j\in\mathscr{S} A=j=1nEj,EjS
Also A k = ∑ l = 1 m k E k , l , E k , l ∈ S A_k=\sum_{l=1}^{m_k}E_{k,l}, E_{k,l}\in \mathscr{S} Ak=l=1mkEk,l,Ek,lS.
by def ν ( A ) = ∑ j = 1 n μ ( E j ) \nu(A)=\sum_{j=1}^n\mu(E_j) ν(A)=j=1nμ(Ej)
E j = E j ∩ A = E j ∩ ( ∑ k ≥ 1 A k ) = E j ∩ ( ∑ k ≥ 1 ∑ l = 1 m k E k , l ) = ∑ k ≥ 1 ∑ l = 1 m k E j ∩ E k , l E_j=E_j\cap A= E_j\cap (\sum_{k\ge1}A_k) = E_j\cap (\sum_{k\ge1}\sum_{l=1}^{m_k}E_{k,l} ) = \sum_{k\ge1}\sum_{l=1}^{m_k} E_j\cap E_{k,l} Ej=EjA=Ej(k1Ak)=Ej(k1l=1mkEk,l)=k1l=1mkEjEk,l
By σ \sigma σ-additive of μ \mu μ, μ ( E j ) = ∑ k ≥ 1 ∑ l = 1 m k μ ( E j ∩ E k , l ) \mu(E_j)= \sum_{k\ge1}\sum_{l=1}^{m_k} \mu(E_j\cap E_{k,l}) μ(Ej)=k1l=1mkμ(EjEk,l)
Therefore, ν ( A ) = ∑ j = 1 n μ ( E j ) = ∑ j = 1 n ∑ k ≥ 1 ∑ l = 1 m k μ ( E j ∩ E k , l ) \nu(A)=\sum_{j=1}^n\mu(E_j) =\sum_{j=1}^n \sum_{k\ge1}\sum_{l=1}^{m_k} \mu(E_j\cap E_{k,l}) ν(A)=j=1nμ(Ej)=j=1nk1l=1mkμ(EjEk,l)
Note ν ( A k ) = ∑ l = 1 m k μ ( E k , l ) \nu(A_k) = \sum_{l=1}^{m_k}\mu(E_{k,l}) ν(Ak)=l=1mkμ(Ek,l)
E k , l = E k , l ∩ A = ∪ j = 1 n E k , l ∩ E j E_{k,l} = E_{k,l}\cap A =\cup_{j=1}^n E_{k,l}\cap E_j Ek,l=Ek,lA=j=1nEk,lEj
So μ ( E k , l ) = ∪ j = 1 n μ ( E k , l ∩ E j ) \mu(E_{k,l}) =\cup_{j=1}^n \mu(E_{k,l}\cap E_j) μ(Ek,l)=j=1nμ(Ek,lEj)
So ν ( A ) = ∑ k ≥ 1 ∑ l = 1 m k μ ( E k , l ) = ∑ k ≥ 1 ν ( A k ) \nu(A) = \sum_{k\ge1}\sum_{l=1}^{m_k}\mu(E_{k,l})=\sum_{k\ge1}\nu(A_k) ν(A)=k1l=1mkμ(Ek,l)=k1ν(Ak)

标题Python网络课程在线学习平台研究AI更换标题第1章引言介绍Python网络课程在线学习平台的研究背景、意义、国内外现状和研究方法。1.1研究背景与意义阐述Python在线学习平台的重要性和研究意义。1.2国内外研究现状概述国内外Python在线学习平台的发展现状。1.3研究方法与论文结构介绍本文的研究方法和整体论文结构。第2章相关理论总结在线学习平台及Python教育的相关理论。2.1在线学习平台概述介绍在线学习平台的基本概念、特点和发展趋势。2.2Python教育理论阐述Python语言教学的理论和方法。2.3技术支持理论讨论构建在线学习平台所需的技术支持理论。第3章Python网络课程在线学习平台设计详细介绍Python网络课程在线学习平台的设计方案。3.1平台功能设计阐述平台的核心功能,如课程管理、用户管理、学习跟踪等。3.2平台架构设计给出平台的整体架构,包括前后端设计、数据库设计等。3.3平台界面设计介绍平台的用户界面设计,强调用户体验和易用性。第4章平台实现与测试详细阐述Python网络课程在线学习平台的实现过程和测试方法。4.1平台实现介绍平台的开发环境、技术栈和实现细节。4.2平台测试对平台进行功能测试、性能测试和安全测试,确保平台稳定可靠。第5章平台应用与效果分析分析Python网络课程在线学习平台在实际应用中的效果。5.1平台应用案例介绍平台在实际教学或培训中的应用案例。5.2效果评估与分析通过数据分析和用户反馈,评估平台的应用效果。第6章结论与展望总结Python网络课程在线学习平台的研究成果,并展望未来发展方向。6.1研究结论概括本文关于Python在线学习平台的研究结论。6.2研究展望提出未来Python在线学习平台的研究方向和发展建议。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值