POJ2318TOYS
题意:
给一个矩形和 n n n条线将矩形分成 n + 1 n+1 n+1块区域,给 m m m个点保证点不在线上,问每一块区域里有几个点。
思路:
很容易看出,一个点如果在一个区域内,它会在一条边的顺时针方向和另一条边的逆时针方向。所以用叉积。
如果一个点在一个区域里,设区域为
A
B
C
D
ABCD
ABCD,点为
P
P
P。可得
(
A
B
→
×
A
P
→
)
∗
(
C
D
→
×
C
P
→
)
<
0
(\overrightarrow{AB}\times\overrightarrow{AP})*(\overrightarrow{CD}\times\overrightarrow{CP})<0
(AB×AP)∗(CD×CP)<0。暴力枚举即可。
代码:
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<algorithm>
#include<string.h>
#include<ctype.h>
#include<queue>
#include<set>
#include<stack>
#include<cmath>
#include<map>
#define pii pair<int,int>
#define ll long long
#define cl(x,y) memset(x,y,sizeof(x))
#define ct cerr<<"Time elapsed:"<<1.0*clock()/CLOCKS_PER_SEC<<"s.\n";
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define all(x) x.begin(),x.end()
#define lson x<<1,l,mid
#define rson x<<1|1,mid+1,r
#define INF 1e18
const int N=1e6+10;
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const double eps=1e-8;
const double pi=acos(-1);
using namespace std;
int sgn(double x)
{
if(fabs(x) < eps)return 0;
if(x < 0) return -1;
else return 1;
}
struct point
{
double x,y;
point(){}
point(double xx,double yy){x=xx;y=yy;}
point operator +(point b){return point(x+b.x,y+b.y);}
point operator -(point b){return point(x-b.x,y-b.y);}
double operator ^(point b){return x*b.y-y*b.x;}//叉乘
double operator *(point b){return x*b.x+y*b.y;}//点乘
point operator *(double b){return point(x*b,y*b);}//数乘
void read(){scanf("%lf%lf",&x,&y);}
}p;
struct line
{
point s,e,l;
line(){}
line(point ss,point ee){s = ss;e = ee;l=e-s;}
void read(){s.read(),e.read();l=e-s;}
}l[5010];
int ans[5010]={0};
int main()
{
int n,m;
double x1,y1,x2,y2;
while(~scanf("%d",&n) && n)
{
int i,j;
cl(ans,0);
scanf("%d%lf%lf%lf%lf",&m,&x1,&y1,&x2,&y2);
l[0]={point{x1,y1},point{x1,y2}};
l[n+1]={point{x2,y1},point{x2,y2}};
for(i=1;i<=n;i++)
{
double u,v;
scanf("%lf%lf",&u,&v);
l[i]={point{u,y1},point{v,y2}};
}
for(i=1;i<=m;i++)
{
p.read();
for(j=0;j<=n;j++)
if(((p-l[j].s)^l[j].l)*((p-l[j+1].s)^l[j+1].l)<0)
{
ans[j]++;
break;
}
}
for(i=0;i<=n;i++)
printf("%d: %d\n",i,ans[i]);
puts("");
}
return 0;
}
POJ2398Toy Storage
题意:
与上一题基本一致,就是输出不同,从小到大输出含有点的个数的格子有多少个。
思路:
与上一题基本一致,就是注意给的线要排序。
代码:
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<algorithm>
#include<string.h>
#include<ctype.h>
#include<queue>
#include<set>
#include<stack>
#include<cmath>
#include<map>
#define pii pair<int,int>
#define ll long long
#define cl(x,y) memset(x,y,sizeof(x))
#define ct cerr<<"Time elapsed:"<<1.0*clock()/CLOCKS_PER_SEC<<"s.\n";
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define all(x) x.begin(),x.end()
#define lson x<<1,l,mid
#define rson x<<1|1,mid+1,r
#define INF 1e18
const int N=1e6+10;
const int mod=1e9+7;
const int inf=0x3f3f3f3f;
const double eps=1e-8;
const double pi=acos(-1);
using namespace std;
int sgn(double x)
{
if(fabs(x) < eps)return 0;
if(x < 0) return -1;
else return 1;
}
struct point
{
double x,y;
point(){}
point(double xx,double yy){x=xx;y=yy;}
point operator +(point b){return point(x+b.x,y+b.y);}
point operator -(point b){return point(x-b.x,y-b.y);}
double operator ^(point b){return x*b.y-y*b.x;}//叉乘
double operator *(point b){return x*b.x+y*b.y;}//点乘
point operator *(double b){return point(x*b,y*b);}//数乘
void read(){scanf("%lf%lf",&x,&y);}
}p;
struct line
{
point s,e,l;
line(){}
line(point ss,point ee){s = ss;e = ee;l=e-s;}
void read(){s.read(),e.read();l=e-s;}
}l[5010];
int ans[5010]={0},sum[5010];
int cmp(line a,line b)
{
if(a.s.x==b.s.x)
return a.e.x<b.e.x;
return a.s.x<b.s.x;
}
int main()
{
int n,m;
double x1,y1,x2,y2;
while(~scanf("%d",&n) && n)
{
int i,j;
cl(ans,0);
cl(sum,0);
scanf("%d%lf%lf%lf%lf",&m,&x1,&y1,&x2,&y2);
l[0]={point{x1,y1},point{x1,y2}};
l[n+1]={point{x2,y1},point{x2,y2}};
for(i=1;i<=n;i++)
{
double u,v;
scanf("%lf%lf",&u,&v);
l[i]={point{u,y1},point{v,y2}};
}
sort(l,l+n+2,cmp);
for(i=1;i<=m;i++)
{
p.read();
for(j=0;j<=n;j++)
if(sgn((p-l[j].s)^l[j].l)*sgn((p-l[j+1].s)^l[j+1].l)<0)
{
ans[j]++;
break;
}
}
for(i=0;i<=n;i++)
sum[ans[i]]++;
printf("Box\n");
for(i=1;i<=m;i++)
if(sum[i])
printf("%d: %d\n",i,sum[i]);
}
return 0;
}