hdu 5086 Revenge of Segment Tree

本文介绍了一种使用线段树解决特定序列子序列求和问题的方法。通过对序列中每个元素出现频率的计算,实现了高效查询。文章提供了一个具体的编程实现案例,并附带了解题思路。
Problem Description
In computer science, a segment tree is a tree data structure for storing intervals, or segments. It allows querying which of the stored segments contain a given point. It is, in principle, a static structure; that is, its content cannot be modified once the structure is built. A similar data structure is the interval tree.
A segment tree for a set I of n intervals uses O(n log n) storage and can be built in O(n log n) time. Segment trees support searching for all the intervals that contain a query point in O(log n + k), k being the number of retrieved intervals or segments.
---Wikipedia

Today, Segment Tree takes revenge on you. As Segment Tree can answer the sum query of a interval sequence easily, your task is calculating the sum of the sum of all continuous sub-sequences of a given number sequence.
 

Input
The first line contains a single integer T, indicating the number of test cases.

Each test case begins with an integer N, indicating the length of the sequence. Then N integer Ai follows, indicating the sequence.

[Technical Specification]
1. 1 <= T <= 10
2. 1 <= N <= 447 000
3. 0 <= Ai <= 1 000 000 000
 

Output
For each test case, output the answer mod 1 000 000 007.
 

Sample Input
2 1 2 3 1 2 3
 

Sample Output
2 20
 
Hint
For the second test case, all continuous sub-sequences are [1], [2], [3], [1, 2], [2, 3] and [1, 2, 3]. So the sum of the sum of the sub-sequences is 1 + 2 + 3 + 3 + 5 + 6 = 20.Huge input, faster I/O method is recommended. And as N is rather big, too straightforward algorithm (for example, O(N^2)) will lead Time Limit Exceeded.And one more little helpful hint, be careful about the overflow of int.
 
题意:
计算一个整数序列所有子序列的和。
 
/*
题目叫做【线段树的复仇】,真是看呆我,其实是道找规律的题目
只要计算A[i]的出现次数,直接乘,然后相加就行。
至于出现次数,通过1-6个数的序列的各数字出现次数,每一斜行都是呈倍数递增的,第一斜行是1 2 3 4 5 6,第二斜行是2 4 6 8 10...
所以易得第n行的第i个数的出现次数为i*(n-i+1)。
*/
 
代码:
#include<iostream>
#include<stdio.h>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#define mod 1000000007
using namespace std;
__int64 d[447100];
int main()
{
	//freopen("C:\\test.txt","r",stdin);
	//freopen("C:\\res.txt","w",stdout);
	int t;
	__int64 i,n;
	__int64 sum;
	scanf("%d",&t);
	while(t--)
	{
		sum=0;
		scanf("%I64d",&n);
		for(i=0;i<n;i++)
			scanf("%I64d",&d[i]);
		for(i=0;i<n;i++)
		{
			sum=sum+((((i+1)*(n-i))%mod)*d[i])%mod;
			sum%=mod;
		}
		printf("%I64d\n",sum);
	}
	return 0;
}

下载方式:https://pan.quark.cn/s/a4b39357ea24 布线问题(分支限界算法)是计算机科学和电子工程领域中一个广为人知的议题,它主要探讨如何在印刷电路板上定位两个节点间最短的连接路径。 在这一议题中,电路板被构建为一个包含 n×m 个方格的矩阵,每个方格能够被界定为可通行或不可通行,其核心任务是定位从初始点到最终点的最短路径。 分支限界算法是处理布线问题的一种常用策略。 该算法与回溯法有相似之处,但存在差异,分支限界法仅需获取满足约束条件的一个最优路径,并按照广度优先或最小成本优先的原则来探索解空间树。 树 T 被构建为子集树或排列树,在探索过程中,每个节点仅被赋予一次成为扩展节点的机会,且会一次性生成其全部子节点。 针对布线问题的解决,队列式分支限界法可以被采用。 从起始位置 a 出发,将其设定为首个扩展节点,并将与该扩展节点相邻且可通行的方格加入至活跃节点队列中,将这些方格标记为 1,即从起始方格 a 到这些方格的距离为 1。 随后,从活跃节点队列中提取队首节点作为下一个扩展节点,并将与当前扩展节点相邻且未标记的方格标记为 2,随后将这些方格存入活跃节点队列。 这一过程将持续进行,直至算法探测到目标方格 b 或活跃节点队列为空。 在实现上述算法时,必须定义一个类 Position 来表征电路板上方格的位置,其成员 row 和 col 分别指示方格所在的行和列。 在方格位置上,布线能够沿右、下、左、上四个方向展开。 这四个方向的移动分别被记为 0、1、2、3。 下述表格中,offset[i].row 和 offset[i].col(i=0,1,2,3)分别提供了沿这四个方向前进 1 步相对于当前方格的相对位移。 在 Java 编程语言中,可以使用二维数组...
源码来自:https://pan.quark.cn/s/a4b39357ea24 在VC++开发过程中,对话框(CDialog)作为典型的用户界面组件,承担着与用户进行信息交互的重要角色。 在VS2008SP1的开发环境中,常常需要满足为对话框配置个性化背景图片的需求,以此来优化用户的操作体验。 本案例将系统性地阐述在CDialog框架下如何达成这一功能。 首先,需要在资源设计工具中构建一个新的对话框资源。 具体操作是在Visual Studio平台中,进入资源视图(Resource View)界面,定位到对话框(Dialog)分支,通过右键选择“插入对话框”(Insert Dialog)选项。 完成对话框内控件的布局设计后,对对话框资源进行保存。 随后,将着手进行背景图片的载入工作。 通常有两种主要的技术路径:1. **运用位图控件(CStatic)**:在对话框界面中嵌入一个CStatic控件,并将其属性设置为BST_OWNERDRAW,从而具备自主控制绘制过程的权限。 在对话框的类定义中,需要重写OnPaint()函数,负责调用图片资源并借助CDC对象将其渲染到对话框表面。 此外,必须合理处理WM_CTLCOLORSTATIC消息,确保背景图片的展示不会受到其他界面元素的干扰。 ```cppvoid CMyDialog::OnPaint(){ CPaintDC dc(this); // 生成设备上下文对象 CBitmap bitmap; bitmap.LoadBitmap(IDC_BITMAP_BACKGROUND); // 获取背景图片资源 CDC memDC; memDC.CreateCompatibleDC(&dc); CBitmap* pOldBitmap = m...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值