Leetcode 101 对称二叉树

给定一个二叉树,检查它是否是镜像对称的。

例如,二叉树 [1,2,2,3,4,4,3] 是对称的。

    1
   / \
  2   2
 / \ / \
3  4 4  3
但是下面这个 [1,2,2,null,3,null,3] 则不是镜像对称的:

    1
   / \
  2   2
   \   \
   3    3

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    bool Judge(TreeNode* L,TreeNode* R)
    {
        if(L ==  NULL&& R ==NULL)
            return 1;
        if(L ==  NULL|| R ==NULL)
            return 0;
        return L->val == R->val && Judge(L->left,R->right)&& Judge(R->left,L->right);
    }
    bool isSymmetric(TreeNode* root) {
        if(root)
            return Judge(root->left,root->right);
        else
            return 1;
    }
};

 

资源下载链接为: https://pan.quark.cn/s/9648a1f24758 这个HTML文件是一个专门设计的网页,适合在告白或纪念日这样的特殊时刻送给女朋友,给她带来惊喜。它通过HTML技术,将普通文字转化为富有情感和创意的表达方式,让数字媒体也能传递深情。HTML(HyperText Markup Language)是构建网页的基础语言,通过标签描述网页结构和内容,让浏览器正确展示页面。在这个特效网页中,开发者可能使用了HTML5的新特性,比如音频、视频、Canvas画布或WebGL图形,来提升视觉效果和交互体验。 原本这个文件可能是基于ASP.NET技术构建的,其扩展名是“.aspx”。ASP.NET是微软开发的一个服务器端Web应用程序框架,支持多种编程语言(如C#或VB.NET)来编写动态网页。但为了在本地直接运行,不依赖服务器,开发者将其转换为纯静态的HTML格式,只需浏览器即可打开查看。 在使用这个HTML特效页时,建议使用Internet Explorer(IE)浏览器,因为一些老的或特定的网页特效可能只在IE上表现正常,尤其是那些依赖ActiveX控件或IE特有功能的页面。不过,由于IE逐渐被淘汰,现代网页可能不再对其进行优化,因此在其他现代浏览器上运行可能会出现问题。 压缩包内的文件“yangyisen0713-7561403-biaobai(html版本)_1598430618”是经过压缩的HTML文件,可能包含图片、CSS样式表和JavaScript脚本等资源。用户需要先解压,然后在浏览器中打开HTML文件,就能看到预设的告白或纪念日特效。 这个项目展示了HTML作为动态和互动内容载体的强大能力,也提醒我们,尽管技术在进步,但有时复古的方式(如使用IE浏览器)仍能唤起怀旧之情。在准备类似的个性化礼物时,掌握基本的HTML和网页制作技巧非常
### LeetCode 101 对称二叉树 C语言实现 #### 递归方法 为了判断一棵二叉树是否为对称结构,可以采用递归的方法来比较两棵子树。具体来说,要验证整棵树是否对称,则需确认其左子树与右子树互为镜像。 对于任意节点而言,只有当该节点的左右孩子均为空或两者皆不为空且值相等时才满足条件;接着再分别对比当前节点左侧孩子的左子树同右侧孩子的右子树以及左侧孩子的右子树同右侧孩子的左子树之间的关系即可[^4]。 下面是具体的C语言代码: ```c /** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ bool isMirror(struct TreeNode* t1, struct TreeNode* t2){ if (t1 == NULL && t2 == NULL) return true; // 如果两个都是NULL则返回true if (t1 == NULL || t2 == NULL) return false; // 只有一个是NULL则不对称 // 值相同的情况下继续检查各自的左右分支是否也构成镜子映射的关系 return (t1->val == t2->val) && isMirror(t1->right, t2->left) && isMirror(t1->left, t2->right); } bool isSymmetric(struct TreeNode* root){ return isMirror(root, root); // 调用辅助函数isMirror来进行实际运算 } ``` 此段程序通过定义了一个名为`isMirror()`的帮助函数用于检测给定的一对节点`t1`和`t2`所代表的子树之间是否存在镜面对应关系,并最终利用它完成整个过程中的核心逻辑处理工作[^5]。 #### 迭代方法 除了上述提到的基于栈帧调用来解决问题的方式外,还可以借助队列这种数据结构以迭代的形式达成同样的目的——即每次取出一对待考察的对象并将其对应的四个方向上的邻接点依次入队等待后续进一步检验直至遍历完毕为止[^1]。 以下是使用广度优先搜索(BFS)策略下的另一种可能解决方案: ```c #include <stdbool.h> #include <stdlib.h> typedef struct QueueNode{ struct TreeNode *data; struct QueueNode *next; }QueueNode; // 初始化队列操作... void initQueue(QueueNode **front, QueueNode **rear); // 入队操作... void enqueue(QueueNode **front, QueueNode **rear, struct TreeNode *item); // 出队操作... struct TreeNode* dequeue(QueueNode **front, QueueNode **rear); bool check(struct TreeNode *u, struct TreeNode *v){ QueueNode *q_front = NULL,* q_rear = NULL; initQueue(&q_front,&q_rear); enqueue(&q_front,&q_rear,u); enqueue(&q_front,&q_rear,v); while(q_front != NULL){ u = dequeue(&q_front,&q_rear); v = dequeue(&q_front,&q_rear); if(!u && !v) continue; if((!u||!v)||(u->val!=v->val)) return false; enqueue(&q_front,&q_rear,u->left); enqueue(&q_front,&q_rear,v->right); enqueue(&q_front,&q_rear,u->right); enqueue(&q_front,&q_rear,v->left); } return true; } bool isSymmetric(struct TreeNode* root){ return check(root,root); } ``` 这段代码实现了非递归版的算法流程,在这里引入了额外的数据容器(如链表形式表示的队列),以便于按照层次顺序逐层访问各个顶点及其关联边的信息从而达到预期效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值