原文地址:blog.youkuaiyun.com/silver_sail/article/details/51899659
安装Tensorflow的过程就不必说了,安装官网或者google一下,很多资源。
这次实验是在Iris数据集进行的,下载链接
代码如下:
- import os
- import cv2
- import numpy as np
- import sys
- import tensorflow as tf
- import random
- import math
- def weight_variable(shape):
- initial = tf.truncated_normal(shape, stddev=0.1)
- return tf.Variable(initial)
- def bias_variable(shape):
- initial = tf.constant(0.1, shape=shape)
- return tf.Variable(initial)
- def load_iris(path):
- #check file exist.
- if not os.path.exists(path):
- print "path is not exist"
- return
- return_data = []
- return_label = []
- my_map = {}
- key = 0
- iris_file = open(path);
- for line in iris_file:
- #cut the \n
- line = line[:-1]
- elements = line.split(',')
- if len(elements) == 5:
- temp = elements[:-1]
- data = [float(x) for x in temp]
- category = elements[4]
- label = key
- if my_map.has_key(category):
- label = my_map[category]
- else:
- my_map[category] = key
- key = key + 1
- label_vector = [0] * 3;
- label_vector[label] = 1;
- return_data.append(data)
- return_label.append(label_vector)
- iris_file.close()
- return return_data,return_label
- def run(train_path):
- #load data
- img,label = load_iris(train_path)
- sess = tf.InteractiveSession()
- #first layer.
- with tf.name_scope('input'):
- x = tf.placeholder("float", shape=[None, 4],name='x-input')
- y_ = tf.placeholder("float", shape=[None, 3],name='y-input')
- def next_batch(img,label,size):
- img_r =[]
- label_r = []
- for num in range(size):
- index = random.randint(0,len(img)-1)
- img_r.append(np.array(img[index]))
- label_r.append(np.array(label[index]))
- img_r = np.array(img_r)
- label_r = np.array(label_r)
- return {x:img_r,y_:label_r}
- def variable_summaries(var, name):
- with tf.name_scope('summaries'):
- mean = tf.reduce_mean(var)
- tf.scalar_summary('mean/' + name, mean)
- with tf.name_scope('stddev'):
- stddev = tf.sqrt(tf.reduce_sum(tf.square(var - mean)))
- tf.scalar_summary('sttdev/' + name, stddev)
- tf.scalar_summary('max/' + name, tf.reduce_max(var))
- tf.scalar_summary('min/' + name, tf.reduce_min(var))
- tf.histogram_summary(name, var)
- #fully connection
- def nn_layer(input,input_dim,output_dim,layer_name,act=tf.nn.relu):
- with tf.name_scope(layer_name):
- with tf.name_scope('W'):
- f_w_1 = weight_variable([input_dim,output_dim])
- variable_summaries(f_w_1, layer_name + '/weights')
- with tf.name_scope('B'):
- f_b_1 = bias_variable([output_dim])
- variable_summaries(f_b_1, layer_name + '/bias')
- with tf.name_scope('Wx_plus_b'):
- input_drop = tf.reshape(input,[-1,input_dim])
- f_r_1 = tf.matmul(input_drop,f_w_1) + f_b_1
- tf.histogram_summary(layer_name + '/pre_activations', f_r_1)
- activations = act(f_r_1, 'activation')
- tf.histogram_summary(layer_name + '/activations', activations)
- return activations
- l1_output = nn_layer(x,4,100,'layer1')
- l2_output = nn_layer(l1_output,100,3,'layer2',act=tf.nn.softmax)
- #
- with tf.name_scope('cross_entropy'):
- cross_entropy = -tf.reduce_sum(y_*tf.log(l2_output))
- tf.scalar_summary('cross entropy', cross_entropy)
- with tf.name_scope('train'):
- train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
- correct_prediction = tf.equal(tf.argmax(l2_output,1), tf.argmax(y_,1))
- with tf.name_scope('accuracy'):
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
- tf.scalar_summary('accuracy',accuracy)
- merged = tf.merge_all_summaries()
- train_writer = tf.train.SummaryWriter('/home/ubuntu/temp/log/train',sess.graph)
- test_writer = tf.train.SummaryWriter('/home/ubuntu/temp/log/test')
- tf.initialize_all_variables().run()
- for i in range(200000):
- if i % 100 == 0: # Record summaries and test-set accuracy
- summary, acc = sess.run([merged, accuracy], feed_dict=next_batch(img,label,20))
- test_writer.add_summary(summary, i)
- print('Accuracy at step %s: %s' % (i, acc))
- else: # Record train set summaries, and train
- if i % 100 == 99: # Record execution stats
- run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
- run_metadata = tf.RunMetadata()
- summary, _ = sess.run([merged, train_step],
- feed_dict=next_batch(img,label,20),
- options=run_options,
- run_metadata=run_metadata)
- train_writer.add_run_metadata(run_metadata, 'step%d' % i)
- train_writer.add_summary(summary, i)
- print('Adding run metadata for', i)
- else: # Record a summary
- summary, _ = sess.run([merged, train_step], feed_dict=next_batch(img,label,20))
- train_writer.add_summary(summary, i)
- if __name__ == '__main__':
- run('iris.data.set.txt')
代码是参考tensorflow官网的例子进行实验的,官网例子如下:
- # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the 'License');
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an 'AS IS' BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- """A simple MNIST classifier which displays summaries in TensorBoard.
- This is an unimpressive MNIST model, but it is a good example of using
- tf.name_scope to make a graph legible in the TensorBoard graph explorer, and of
- naming summary tags so that they are grouped meaningfully in TensorBoard.
- It demonstrates the functionality of every TensorBoard dashboard.
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import tensorflow as tf
- from tensorflow.examples.tutorials.mnist import input_data
- flags = tf.app.flags
- FLAGS = flags.FLAGS
- flags.DEFINE_boolean('fake_data', False, 'If true, uses fake data '
- 'for unit testing.')
- flags.DEFINE_integer('max_steps', 1000, 'Number of steps to run trainer.')
- flags.DEFINE_float('learning_rate', 0.001, 'Initial learning rate.')
- flags.DEFINE_float('dropout', 0.9, 'Keep probability for training dropout.')
- flags.DEFINE_string('data_dir', '/tmp/data', 'Directory for storing data')
- flags.DEFINE_string('summaries_dir', '/tmp/mnist_logs', 'Summaries directory')
- def train():
- # Import data
- mnist = input_data.read_data_sets(FLAGS.data_dir,
- one_hot=True,
- fake_data=FLAGS.fake_data)
- sess = tf.InteractiveSession()
- # Create a multilayer model.
- # Input placehoolders
- with tf.name_scope('input'):
- x = tf.placeholder(tf.float32, [None, 784], name='x-input')
- y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')
- with tf.name_scope('input_reshape'):
- image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
- tf.image_summary('input', image_shaped_input, 10)
- # We can't initialize these variables to 0 - the network will get stuck.
- def weight_variable(shape):
- """Create a weight variable with appropriate initialization."""
- initial = tf.truncated_normal(shape, stddev=0.1)
- return tf.Variable(initial)
- def bias_variable(shape):
- """Create a bias variable with appropriate initialization."""
- initial = tf.constant(0.1, shape=shape)
- return tf.Variable(initial)
- def variable_summaries(var, name):
- """Attach a lot of summaries to a Tensor."""
- with tf.name_scope('summaries'):
- mean = tf.reduce_mean(var)
- tf.scalar_summary('mean/' + name, mean)
- with tf.name_scope('stddev'):
- stddev = tf.sqrt(tf.reduce_sum(tf.square(var - mean)))
- tf.scalar_summary('sttdev/' + name, stddev)
- tf.scalar_summary('max/' + name, tf.reduce_max(var))
- tf.scalar_summary('min/' + name, tf.reduce_min(var))
- tf.histogram_summary(name, var)
- def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
- """Reusable code for making a simple neural net layer.
- It does a matrix multiply, bias add, and then uses relu to nonlinearize.
- It also sets up name scoping so that the resultant graph is easy to read,
- and adds a number of summary ops.
- """
- # Adding a name scope ensures logical grouping of the layers in the graph.
- with tf.name_scope(layer_name):
- # This Variable will hold the state of the weights for the layer
- with tf.name_scope('weights'):
- weights = weight_variable([input_dim, output_dim])
- variable_summaries(weights, layer_name + '/weights')
- with tf.name_scope('biases'):
- biases = bias_variable([output_dim])
- variable_summaries(biases, layer_name + '/biases')
- with tf.name_scope('Wx_plus_b'):
- preactivate = tf.matmul(input_tensor, weights) + biases
- tf.histogram_summary(layer_name + '/pre_activations', preactivate)
- activations = act(preactivate, 'activation')
- tf.histogram_summary(layer_name + '/activations', activations)
- return activations
- hidden1 = nn_layer(x, 784, 500, 'layer1')
- with tf.name_scope('dropout'):
- keep_prob = tf.placeholder(tf.float32)
- tf.scalar_summary('dropout_keep_probability', keep_prob)
- dropped = tf.nn.dropout(hidden1, keep_prob)
- y = nn_layer(dropped, 500, 10, 'layer2', act=tf.nn.softmax)
- with tf.name_scope('cross_entropy'):
- diff = y_ * tf.log(y)
- with tf.name_scope('total'):
- cross_entropy = -tf.reduce_mean(diff)
- tf.scalar_summary('cross entropy', cross_entropy)
- with tf.name_scope('train'):
- train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
- cross_entropy)
- with tf.name_scope('accuracy'):
- with tf.name_scope('correct_prediction'):
- correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
- with tf.name_scope('accuracy'):
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
- tf.scalar_summary('accuracy', accuracy)
- # Merge all the summaries and write them out to /tmp/mnist_logs (by default)
- merged = tf.merge_all_summaries()
- train_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/train',
- sess.graph)
- test_writer = tf.train.SummaryWriter(FLAGS.summaries_dir + '/test')
- tf.initialize_all_variables().run()
- # Train the model, and also write summaries.
- # Every 10th step, measure test-set accuracy, and write test summaries
- # All other steps, run train_step on training data, & add training summaries
- def feed_dict(train):
- """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
- if train or FLAGS.fake_data:
- xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)
- k = FLAGS.dropout
- else:
- xs, ys = mnist.test.images, mnist.test.labels
- k = 1.0
- return {x: xs, y_: ys, keep_prob: k}
- for i in range(FLAGS.max_steps):
- if i % 10 == 0: # Record summaries and test-set accuracy
- summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
- test_writer.add_summary(summary, i)
- print('Accuracy at step %s: %s' % (i, acc))
- else: # Record train set summaries, and train
- if i % 100 == 99: # Record execution stats
- run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
- run_metadata = tf.RunMetadata()
- summary, _ = sess.run([merged, train_step],
- feed_dict=feed_dict(True),
- options=run_options,
- run_metadata=run_metadata)
- train_writer.add_run_metadata(run_metadata, 'step%d' % i)
- train_writer.add_summary(summary, i)
- print('Adding run metadata for', i)
- else: # Record a summary
- summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
- train_writer.add_summary(summary, i)
- def main(_):
- if tf.gfile.Exists(FLAGS.summaries_dir):
- tf.gfile.DeleteRecursively(FLAGS.summaries_dir)
- tf.gfile.MakeDirs(FLAGS.summaries_dir)
- train()
- if __name__ == '__main__':
- tf.app.run()
有了这个代码,就可以运行了。因为自己设置的目录是/home/ubuntu/temp/log,所以在tensorboard运行的时候要指定这个目录。
命令如下:
- python tensorboard.py --logdir=/home/ubuntu/temp/log
之后访问一下指定地址:
如果访问没有数据,可以在命令后面加上--debug来查看详细信息,
红色标记的是tensorboard监视的目录,查看一下是否正确。
如果还是不正确。。。就只能安装官网Readme来排查了: