代码地址:https://github.com/xinyu-ch/faster-rcnn.pytorch/blob/master/lib/model/faster_rcnn/resnet.py
前言
具体的理论知识可参考:https://www.cnblogs.com/shouhuxianjian/p/7766441.html
1 总结构
如下是ResNet的一个主题结构,通过__init__函数可设置对应的ResNet网络,block代表网络的结构(BasicBlock–基础结构, Bottleneck–瓶颈结构),layers代表选择不同的层([2, 2, 2, 2]–res18, [3, 4, 6, 3]–res18, [3, 4, 6, 3]–res50, [3, 4, 23, 3]–res101,具体可参考ResNet详细结构),默认类别num_classes–1000。__make_layer用于创建结构类似的层,其中的downsample在稍后介绍的基础结构会用到,downsample在瓶颈结构中会用到。self.modules会返回模型的每一层参数,此处for循环是用于初始化卷积层和batch normalization层的参数。layer1, layer2, layer3, layer4 是输入输出层数不同但结构相同的resual网络层,后面详细解释。
Res101层构成:第1层–conv1卷积层+bn+relu+Maxpool; 第2~10层(33)–layer1; 第11~22层(43)–layer2;第23~91层(233)–layer3; 第92~100层(33)–layer4; 第101层:avgpool层+fc层。
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=0, ceil_mode=True) # change
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
# it is slightly better whereas slower to set stride = 1
# self.layer4 = self._make_layer(block, 512, layers[3], stride=1)
self.avgpool = nn.AvgPool2d(7)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
2 基础Resual 网络结构
ResNet网络中主要用到了两个结构:基础ResNet结构和瓶颈结构,如下图,左侧是基础结构,其一般用于层数小于30层的时候;右侧的是瓶颈结构,其一般用于大于30层的时候,可以大幅减少网络参数。由图可以看出,基础结构的相加部分维度相同,可直接相加,其expansion=1;而瓶颈结构的维度则不太一样,不能直接相加,需要进行downsample处理后才可直接相加,其expansion=4

基础结构代码:
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
瓶颈结构:
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
这里的结构和上图描述的一致,可详细看看。瓶颈结构会用到downsample,但是layer1, layer2, layer3, layer4都只有最开始的时候有用到。
3 基于ResNet骨干网的faster R-CNN
__init__模型初始化,相关参数设置。__init_modules模型初始化,
class resnet(_fasterRCNN):
def __init__(self, classes, num_layers=101, pretrained=False, class_agnostic=False):
self.model_path = 'data/pretrained_model/resnet101_caffe.pth'
self.dout_base_model = 1024
self.pretrained = pretrained
self.class_agnostic = class_agnostic
_fasterRCNN.__init__(self, classes, class_agnostic)
def _init_modules(self):
resnet = resnet101()
if self.pretrained == True:
print("Loading pretrained weights from %s" %(self.model_path))
state_dict = torch.load(self.model_path)
resnet.load_state_dict({k:v for k,v in state_dict.items() if k in resnet.state_dict()})
# Build resnet.
self.RCNN_base = nn.Sequential(resnet.conv1, resnet.bn1,resnet.relu,
resnet.maxpool,resnet.layer1,resnet.layer2,resnet.layer3)
self.RCNN_top = nn.Sequential(resnet.layer4)
self.RCNN_cls_score = nn.Linear(2048, self.n_classes)
if self.class_agnostic:
self.RCNN_bbox_pred = nn.Linear(2048, 4)
else:
self.RCNN_bbox_pred = nn.Linear(2048, 4 * self.n_classes)
# Fix blocks
for p in self.RCNN_base[0].parameters(): p.requires_grad=False
for p in self.RCNN_base[1].parameters(): p.requires_grad=False
assert (0 <= cfg.RESNET.FIXED_BLOCKS < 4)
if cfg.RESNET.FIXED_BLOCKS >= 3:
for p in self.RCNN_base[6].parameters(): p.requires_grad=False
if cfg.RESNET.FIXED_BLOCKS >= 2:
for p in self.RCNN_base[5].parameters(): p.requires_grad=False
if cfg.RESNET.FIXED_BLOCKS >= 1:
for p in self.RCNN_base[4].parameters(): p.requires_grad=False
def set_bn_fix(m):
classname = m.__class__.__name__
if classname.find('BatchNorm') != -1:
for p in m.parameters(): p.requires_grad=False
self.RCNN_base.apply(set_bn_fix)
self.RCNN_top.apply(set_bn_fix)
def train(self, mode=True):
# Override train so that the training mode is set as we want
nn.Module.train(self, mode)
if mode:
# Set fixed blocks to be in eval mode
self.RCNN_base.eval()
self.RCNN_base[5].train()
self.RCNN_base[6].train()
def set_bn_eval(m):
classname = m.__class__.__name__
if classname.find('BatchNorm') != -1:
m.eval()
self.RCNN_base.apply(set_bn_eval)
self.RCNN_top.apply(set_bn_eval)
def _head_to_tail(self, pool5):
fc7 = self.RCNN_top(pool5).mean(3).mean(2)
return fc7
深度解析:Faster R-CNN中的Res101网络
本文深入探讨Faster R-CNN中的Res101网络结构,包括ResNet的基本和瓶颈结构,以及在faster R-CNN中的应用。通过代码分析了Res101的层构成,如conv1、layer1至layer4,以及downsample在瓶颈结构中的作用。
677

被折叠的 条评论
为什么被折叠?



