吴恩达机器学习笔记十四 多输出的分类 多类和多标签的区别 梯度下降优化 卷积层

这里老师想讲的是multiclass classification和multilable classification的区别,下面是我从其他地方找到的说法:

Multiclass classification 多类分类 意味着一个分类任务需要对多于两个类的数据进行分类。比如,对一系列的橘子,苹果或者梨的图片进行分类。多类分类假设每一个样本有且仅有一个标签:一个水果可以被归类为苹果,也可以 是梨,但不能同时被归类为两类

Multilabel classification 多标签分类 给每一个样本分配一系列标签。这可以被认为是预测不相互排斥的数据点的属性,例如与文档类型相关的主题。一个文本可以归类为任意类别,例如可以同时为政治、金融、 教育相关或者不属于以上任何类别。

梯度下降优化

Adam(adaptive moment estimation,自适应运动估计)算法 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值