【附数据集+代码】本地知识库实战,借助RAGFlow搭建医院医疗问诊助手!

使用Huggingface上的开源医疗数据集,借助 RAGFlow 搭建自己的本地医疗问诊助手。(文末附数据集+代码

纯本地构建:本地知识库+本地向量化模型+本地大模型
medical_QA+shaw/dmeta-embedding-zh+qwen2:7b

原理:RAGFlow是一个基于对文档深入理解的开源 RAG(检索增强生成)引擎。它的作用是可以让用户创建自有知识库,根据设定的参数对知识库中的文件进行切块处理,用户向大模型提问时,RAGFlow先查找自有知识库中的切块内容,接着把查找到的知识库数据输入到对话大模型中再生成答案输出

ragflow最大特点:不同的解析方法,支持丰富的文件类型,如Word、PPT、excel表格、csv/txt、图片、PDF、结构化数据、网页等
具体可以在本地部署成功后,在解析方法中查看

接下来,开始进入使用阶段,起舞··**

一 使用自带的 WSL 安装 Ubuntu-22.04 系统**

什么是WSL?WSL(Windows Subsystem for Linux)是微软开发的一项技术,允许用户在Windows系统中直接运行完整的Linux环境,无需虚拟机。通过操作系统级虚拟化,WSL将Linux子系统无缝嵌入Windows,提供原生Linux命令行工具、软件包管理器及应用程序支持。它具有轻量化、文件系统集成、良好的交互性及开发效率提升等优点,消除了Windows与Linux之间的隔阂,尤其适合开发者和需在Windows平台上使用Linux工具的用户。

1 启用window子系统及虚拟化

控制面板->程序和功能->启用或关闭window功能 或者:
win + r 键入 OptionalFeatures,直接打开
提示:winver查看 windows 系统版本:

最后,重启电脑后生效

2 将wsl,升级为wsl2

参考文章:zhuanlan.zhihu.com/p/704855705
说明:win默认系统自带了wsl,直接管理员身份打开cmd执行相关操作

**相关命令:
**

wsl --update #升级到最新版本(wsl2)``wsl --list --online # 查看所有可用的发行版``wsl --install -d Ubuntu-22.04 # 安装 Ubuntu-22.04 系统``wsl -l -v # 显示当前安装了哪些系统``wsl --set-default-version 2 #设置wsl默认版本为wsl2``wsl.exe --set-version Ubuntu-22.04 2 #设置Ubuntu-22.04为 wsl2``wsl.exe --set-version Ubuntu-22.04 1 #设置为wsl1``wsl -d Ubuntu-22.04 #登录到Ubuntu环境

建议:wsl升级并设置默认版本为wsl2

3 启动操作安装的linux
使用 wsl:在 cmd(或powershell)输入 wsl(或者:wsl -d Ubuntu-22.04)
cat /etc/os-release #查看 Linux 的版本

设置时区命令:

timedatectl # 检查当前设置的时区  
sudo timedatectl set-timezone Asia/Shanghai # 将时区设置为中国标准时间  
timedatectl # 确保时区已经正确设置

操作 Linux 文件:
windows 文件资源管理器-> Linux 的标志,点击 Linux 就可以

二 安装win桌面版docker

win桌面版 地址:
www.docker.com/products/docker-desktop/
下载完之后,按照提示,一直点就行了哈

提示:因为安装完成后镜像很大(44G左右),默认会安装在C盘,建议更改到其他空闲盘

更改方法:设置–>Resourses

以下本项目用不到,可以忽略,因为docker用的是win桌面版docker

linux (学习在ubuntu上安装docker和docker compose)

安装docker :
https://zhuanlan.zhihu.com/p/651148141

安装 docker compose:

curl -SL https://github.com/docker/compose/releases/download/v2.29.6/docker-compose-linux-x86_64 -o /usr/local/bin/docker-compose #下载 docker-compose程序包``sudo chmod +x /usr/local/bin/docker-compose #添加可执行权限``docker-compose -v #查看版本

三 部署启动ragflow

以下命令在git bash 中执行

ragflow仓库:
github.com/infiniflow/ragflow/blob/main/README_zh.md

软硬件要求:硬件:CPU ≥ 4 核 ; 内存≥ 16 GB; 磁盘空间 ≥ 50 GB; 软件:Docker版本 ≥ 24.0.0 ;Docker Compose 版本 ≥ v2.26.1



#查看版本docker -vdocker compose version




启动部署服务器:

#1 克隆仓库``git clone https://github.com/infiniflow/ragflow.git``   ``#2 使用Docker镜像启动服务器(45 GB左右,约2小时左右)``修改./docker/.env的45行,把HF_ENDPOINT 设成相应的镜像站点``HF_ENDPOINT=https://hf-mirror.com``$ cd ragflow/docker``$ chmod +x ./entrypoint.sh``$ docker compose -f docker-compose.yml up -d``   ``# 3 确认服务器状态``docker logs -f ragflow-server

5 在浏览器中输入服务器对应的IP地址并登录RAGFlow (可在终端中用 ipconfig 查看ip)

点击signup注册,填入电邮地址和密码后,返回登录页,用刚刚注册的电邮地址和密码登录。

docker相关命令

sudo docker images # 查看镜像``docker ps # 列出正在运行的容器``# 进入名为 ragflow-server 的容器``docker exec -it ragflow-server /bin/bash``cd /ragflow``ls``# 退出容器``exit

相关bug:
bug1:无法正常下载(If inside mainland China)
解决1:修改./docker/.env的45行,把HF_ENDPOINT 设成相应的镜像站点

bug2: dependency failed to start: container ragflow-mysql is unhealthy
解决2:docker compose down -v #移除所有本地数据
docker compose up -d

四 安装本地大模型LLM

安装ollama(一步步点就行)
地址:https://www.ollama.com/

下载qwen2:7b模型(4.4GB)阿里的千问大模型对中文很友好,所以选择它
说明,ollama中有许多开源模型,都可自行本地下载

ollama list #列出模型``ollama run qwen2:7b #下载运行模型``ollama rm          #删除模型``ollama show  #显示模型信息

下载Embedding模型
说明:一个免费的中文的向量化模型

ollama pull shaw/dmeta-embedding-zh``ollama list

最后用浏览器打开 http://localhost:11434
可以看到页面中显示:Ollama is running

五 下载医疗数据集

地址:
huggingface.co/datasets/InfiniFlow/medical_QA

medical_QA(医疗问诊助手数据集),它基于 PubMed 的数百万英文医疗论文,以及一些其他数据集,涵盖多个不同领域具有代表性的专业医疗数据,借助于 Agent 机制,提供中文问诊对话服务
ChatMed_Consult-v0.3.CSV 医疗咨询
Internal medicine_QA_all.csv 内科_QA_all.CSV
Medical Oncology_QA_all.csv 医学肿瘤学_QA_all.CSV
OB GYN_QA_all.csv 妇产科_QA_all.CSV
Pediatrics_QA_all.csv 儿科_QA_all.CSV
Andrology QA.CSV 男科QA.CSV S
urgical_QA_all.csv 外科_QA_all.CSV

公众号回复ragflowDir,免费领取相关数据集

六 RAGFlow 的使用

首先登录ragflow,进入后点击右上角图标

1 添加下载的本地千问模型和向量化模型

模型均在“第四步”做了安装
qwen2:7b:做问答chat的大模型
shaw/dmeta-embedding-zh:做embedding的,本地知识做向量化索引的

点击添加模型->按照如下添加向量化模型

因为ragflow使用的是docker,而ollama是在本地运行的,所以基础url为
base URL:http://host.docker.internal:11434

添加成功发后结果如下

2 创建知识库
2.1点击上方知识库–>创建知识库

2.2添加配置文件 语言选择中文,嵌入模型选择自己下载的,解析方法选择Q&A

2.3新增文件->上传第五步下载的医疗数据集QA

说明:如果不能一起上传,就单个上传

3 开始解析,等待成功 上传后点击右边放启动按钮,开始解析,等待解析成功,我这里文件80M左右,大约90分钟
原理:将每个QA对做成向量,用于提问后的匹配检索

4 检索测试 简单测试下知识库的相关搜索性

七 功能测试与使用

1 聊天(添加助理)

聊天–>添加助理–>配置相关参数(模型选择qwen2:7b) -->确定

模型选择qwen2:7b

测试聊天效果

2后端api服务
说明:通过部署的本地知识库大模型,不仅可以自己使用,还可以通过api给其他应用使用
右键打开聊天api

创建密钥

3 使用python程序调用

文档地址:https://ragflow.io/docs/dev/api

代码效果测试:


说明:测试代码太多了,就不贴了

我们该怎样系统的去转行学习大模型 ?

很多想入行大模型的人苦于现在网上的大模型老课程老教材,学也不是不学也不是,基于此我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近100余次后,终于把整个AI大模型的学习门槛,降到了最低

在这个版本当中:

第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言

您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包分享出来, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉优快云大礼包🎁:全网最全《LLM大模型学习资源包》免费分享(安全链接,放心点击)👈

一、大模型经典书籍(免费分享)

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源

在这里插入图片描述

二、640套大模型报告(免费分享)

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
在这里插入图片描述

三、大模型系列视频教程(免费分享)

在这里插入图片描述

四、2025最新大模型学习路线(免费分享)

我们把学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战。

在这里插入图片描述

L1阶段:启航篇丨极速破界AI新时代
​​​​​​​L1阶段:我们会去了解大模型的基础知识,以及大模型在各个行业的应用和分析;学习理解大模型的
核心原理、关键技术以及大模型应用场景。

在这里插入图片描述

L2阶段:攻坚篇丨RAG开发实战工坊

L2阶段是我们的AI大模型RAG应用开发工程,我们会去学习RAG检索增强生成:包括Naive RAG、Advanced-RAG以及RAG性能评估,还有GraphRAG在内的多个RAG热门项目的分析。

在这里插入图片描述

L3阶段:跃迁篇丨Agent智能体架构设计

L3阶段:大模型Agent应用架构进阶实现,我们会去学习LangChain、 LIamaIndex框架,也会学习到AutoGPT、 MetaGPT等多Agent系统,打造我们自己的Agent智能体。

在这里插入图片描述

L4阶段:精进篇丨模型微调与私有化部署

L4阶段:大模型的微调和私有化部署,我们会更加深入的探讨Transformer架构,学习大模型的微调技术,利用DeepSpeed、Lamam Factory等工具快速进行模型微调;并通过Ollama、vLLM等推理部署框架,实现模型的快速部署。

在这里插入图片描述

L5阶段:专题集丨特训篇 【录播课】

在这里插入图片描述
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方二维码免费领取

👉优快云大礼包🎁:全网最全《LLM大模型学习资源包》免费分享(安全链接,放心点击)👈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值