快速安装 facebookresearch SlowFast

0 前言

之前写过类似的两篇:

三分钟快速安装 facebookresearch SlowFast
【SlowFast复现】SlowFast Networks for Video Recognition复现代码 使用自己的视频进行demo检测

这两篇博客都有些问题,第一篇是我依托的平台倒闭了,所以这次在自己的机器上搭建;第二篇是搞复杂了点。

1 环境安装

创建环境

conda create --name SF python=3.8 -y

激活环境:

conda activate SF

安装torch

pip3 install torch==1.8.1+cu111 torchvision==0.9.1+cu111 \
-f https://download.pytorch.org/whl/torch_stable.html

安装环境

cd /media/lxn/065b7049-e1cd-48de-b687-cabeea652bb3/SF
pip3 install 'git+https://gitee.com/YFwinston/fvcore'
pip3 install simplejson
conda install av -c conda-forge -y
conda install x264 ffmpeg -c conda-forge -y
pip3 install -U iopath or conda install -c iopath iopath
pip3 install psutil

pip3 install tensorboard
pip3 install moviepy
pip3 install pytorchvideo
pip3 install 'git+https://gitee.com/YFwinston/fairscale'
pip3 install cython; pip install git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI
git clone https://gitee.com/YFwinston/detectron2  detectron2_repo
cd  detectron2_repo
python setup.py build develop
cd ..
pip3 install -e detectron2_repo
sudo apt update
sudo apt install libgl1-mesa-glx
git clone https://gitee.com/YFwinston/slowfast.git
export PYTHONPATH=/media/lxn/065b7049-e1cd-48de-b687-cabeea652bb3/SF:$PYTHONPATH
cd slowfast
python setup.py build develop
cd ..

cd ./slowfast/demo/AVA
touch ava.json
touch SLOWFAST_32x2_R101_50_50s.yaml

文件下载

为了让网络运行时,不会在文件下载上花时间,
detectron2 Faster R-CNN 模型主页: https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
在这里插入图片描述
model_final_280758.pkl下载链接:https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl

SlowFast 模型主页: https://github.com/facebookresearch/SlowFast/blob/main/MODEL_ZOO.md

在这里插入图片描述
SLOWFAST_32x2_R101_50_50_v2.1下载链接:https://dl.fbaipublicfiles.com/pyslowfast/model_zoo/ava/SLOWFAST_32x2_R101_50_50_v2.1.pkl

使用终端下载权重文件

wget -p ./configs/AVA/c2/ \
https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl 

wget -p ./configs/AVA/c2/ \
https://dl.fbaipublicfiles.com/pyslowfast/model_zoo/ava/SLOWFAST_32x2_R101_50_50_v2.1.pkl

然后在./slowfast/demo/AVA下面的ava.json写入:

{"bend/bow (at the waist)": 0, "crawl": 1, "crouch/kneel": 2, "dance": 3, "fall down": 4, "get up": 5, "jump/leap": 6, "lie/sleep": 7, "martial art": 8, "run/jog": 9, "sit": 10, "stand": 11, "swim": 12, "walk": 13, "answer phone": 14, "brush teeth": 15, "carry/hold (an object)": 16, "catch (an object)": 17, "chop": 18, "climb (e.g., a mountain)": 19, "clink glass": 20, "close (e.g., a door, a box)": 21, "cook": 22, "cut": 23, "dig": 24, "dress/put on clothing": 25, "drink": 26, "drive (e.g., a car, a truck)": 27, "eat": 28, "enter": 29, "exit": 30, "extract": 31, "fishing": 32, "hit (an object)": 33, "kick (an object)": 34, "lift/pick up": 35, "listen (e.g., to music)": 36, "open (e.g., a window, a car door)": 37, "paint": 38, "play board game": 39, "play musical instrument": 40, "play with pets": 41, "point to (an object)": 42, "press": 43, "pull (an object)": 44, "push (an object)": 45, "put down": 46, "read": 47, "ride (e.g., a bike, a car, a horse)": 48, "row boat": 49, "sail boat": 50, "shoot": 51, "shovel": 52, "smoke": 53, "stir": 54, "take a photo": 55, "text on/look at a cellphone": 56, "throw": 57, "touch (an object)": 58, "turn (e.g., a screwdriver)": 59, "watch (e.g., TV)": 60, "work on a computer": 61, "write": 62, "fight/hit (a person)": 63, "give/serve (an object) to (a person)": 64, "grab (a person)": 65, "hand clap": 66, "hand shake": 67, "hand wave": 68, "hug (a person)": 69, "kick (a person)": 70, "kiss (a person)": 71, "lift (a person)": 72, "listen to (a person)": 73, "play with kids": 74, "push (another person)": 75, "sing to (e.g., self, a person, a group)": 76, "take (an object) from (a person)": 77, "talk to (e.g., self, a person, a group)": 78, "watch (a person)": 79}

然后在./slowfast/demo/AVA下面的SLOWFAST_32x2_R101_50_50s.yaml 写入:

TRAIN:
  ENABLE: False
  DATASET: ava
  BATCH_SIZE: 16
  EVAL_PERIOD: 1
  CHECKPOINT_PERIOD: 1
  AUTO_RESUME: True
  CHECKPOINT_FILE_PATH: './configs/AVA/c2/SLOWFAST_32x2_R101_50_50.pkl'  #path to pretrain model
  CHECKPOINT_TYPE: pytorch
DATA:
  NUM_FRAMES: 32
  SAMPLING_RATE: 2
  TRAIN_JITTER_SCALES: [256, 320]
  TRAIN_CROP_SIZE: 224
  TEST_CROP_SIZE: 256
  INPUT_CHANNEL_NUM: [3, 3]
DETECTION:
  ENABLE: True
  ALIGNED: False
AVA:
  BGR: False
  DETECTION_SCORE_THRESH: 0.8
  TEST_PREDICT_BOX_LISTS: ["person_box_67091280_iou90/ava_detection_val_boxes_and_labels.csv"]
SLOWFAST:
  ALPHA: 4
  BETA_INV: 8
  FUSION_CONV_CHANNEL_RATIO: 2
  FUSION_KERNEL_SZ: 5
RESNET:
  ZERO_INIT_FINAL_BN: True
  WIDTH_PER_GROUP: 64
  NUM_GROUPS: 1
  DEPTH: 101
  TRANS_FUNC: bottleneck_transform
  STRIDE_1X1: False
  NUM_BLOCK_TEMP_KERNEL: [[3, 3], [4, 4], [6, 6], [3, 3]]
  SPATIAL_DILATIONS: [[1, 1], [1, 1], [1, 1], [2, 2]]
  SPATIAL_STRIDES: [[1, 1], [2, 2], [2, 2], [1, 1]]
NONLOCAL:
  LOCATION: [[[], []], [[], []], [[6, 13, 20], []], [[], []]]
  GROUP: [[1, 1], [1, 1], [1, 1], [1, 1]]
  INSTANTIATION: dot_product
  POOL: [[[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]]]
BN:
  USE_PRECISE_STATS: False
  NUM_BATCHES_PRECISE: 200
SOLVER:
  MOMENTUM: 0.9
  WEIGHT_DECAY: 1e-7
  OPTIMIZING_METHOD: sgd
MODEL:
  NUM_CLASSES: 80
  ARCH: slowfast
  MODEL_NAME: SlowFast
  LOSS_FUNC: bce
  DROPOUT_RATE: 0.5
  HEAD_ACT: sigmoid
TEST:
  ENABLE: False
  DATASET: ava
  BATCH_SIZE: 8
DATA_LOADER:
  NUM_WORKERS: 2
  PIN_MEMORY: True

NUM_GPUS: 1
NUM_SHARDS: 1
RNG_SEED: 0
OUTPUT_DIR: .
#TENSORBOARD:
#  MODEL_VIS:
#    TOPK: 2
DEMO:
  ENABLE: True
  LABEL_FILE_PATH: "./demo/AVA/ava.json"
  INPUT_VIDEO: "./demo/1.mp4"
  OUTPUT_FILE: "./demo/out.mp4"

  DETECTRON2_CFG: "COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml"
  DETECTRON2_WEIGHTS: "。/configs/AVA/c2/model_final_280758.pkl"



cp /user-data/slowfastFile/SLOWFAST_32x2_R101_50_50.pkl /home/slowfast/configs/AVA/c2/
cp /user-data/slowfastFile/model_final_280758.pkl /home/slowfast/configs/AVA/c2/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSPhD-winston-杨帆

给我饭钱

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值