大意不再赘述。
思路:有几个表达式我们可以假设c的值为0或者1,然后去推相互之间有矛盾的点,连边时,我们将点拆为2个,一个表示0,一个表示1,Tarjan时就需要循环到2*n啦,有些表达式重复了,比如异或所有的重复了,所以不需要再增加边。
a AND b == 1 (a,b同时为1) a->b, b->a, ~a-->a, ~b-->b;
a AND b == 0 (a,b不同时为1) a-->~b, b-->~a;
a OR b == 1 (a,b不同时为0) ~a-->b, ~b-->a;
a OR b == 0 (a,b同时为0) ~a->~b, ~b->~a, a-->~a, b-->~b;
a XOR b == 1 (a,b不相同为1) a->~b, b->~a, ~a->b, ~b->a;
a XOR b == 0 (a,b相同为0) a->b, b->a, ~a->~b, ~b->~a;
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>
#include <cstdlib>
using namespace std;
const int MAXN = 2020;
const int MAXM = 1000100;
struct Edge
{
int u, v, next;
}edge[MAXM];
int first[MAXN], stack[MAXN], ins[MAXN], low[MAXN], dfn[MAXN];
int belong[MAXM];
int ind[MAXN], outd[MAXN];
int cnt;
int n, m;
int scnt, top, tot;
void init()
{
cnt = 0;
scnt = top = tot = 0;
memset(first, -1, sizeof(first));
memset(ins, 0, sizeof(ins));
memset(dfn, 0, sizeof(dfn));
}
void read_graph(int u, int v)
{
edge[cnt].v = v;
edge[cnt].next = first[u], first[u] = cnt++;
}
void dfs(int u)
{
int v;
low[u] = dfn[u] = ++tot;
stack[top++] = u;
ins[u] = 1;
for(int e = first[u]; e != -1; e = edge[e].next)
{
v = edge[e].v;
if(!dfn[v])
{
dfs(v);
low[u] = min(low[u], low[v]);
}
else if(ins[v])
{
low[u] = min(low[u], dfn[v]);
}
}
if(low[u] == dfn[u])
{
scnt++;
do
{
v = stack[--top];
belong[v] = scnt;
ins[v] = 0;
}while(u != v);
}
}
void Tarjan()
{
for(int v = 0; v < 2*n; v++) if(!dfn[v])
dfs(v);
}
void read_case()
{
init();
while(m--)
{
int x, y, c;
char str[5];
scanf("%d%d%d%s", &x, &y, &c, str);
if(str[0] == 'A') //拆点为2*x, 2*x+1,前者表示~a,后者表示a
{
if(c)
{
read_graph(2*x, 2*x+1);
read_graph(2*y, 2*y+1);
}
else
{
read_graph(2*x+1, 2*y);
read_graph(2*y+1, 2*x);
}
}
else if(str[0] == 'O')
{
if(c)
{
read_graph(2*x, 2*y+1);
read_graph(2*y, 2*x+1);
}
else
{
read_graph(2*x+1, 2*x);
read_graph(2*y+1, 2*y);
}
}
}
}
void solve()
{
read_case();
Tarjan();
for(int i = 0; i < 2*n; i += 2)
{
if(belong[i] == belong[i+1])
{
printf("NO\n");
return ;
}
}
printf("YES\n");
}
int main()
{
while(~scanf("%d%d", &n, &m))
{
solve();
}
return 0;
}