H = kstest(X) %测试向量X是否服从标准正态分布,测试水平为5%。
H = kstest(X,cdf) %指定累积分布函数为cdf的测试(cdf=[ ]时表示标准正态分布),测试水平为5%
H = kstest(X,cdf,alpha) % alpha为指定测试水平H=kstest(X,cdf,alpha,tail) % tail=0为双侧检验, tail=1单侧(<)检验, tail=-1单侧(>) 检验
[H,P,KSSTAT,CV] = kstest(X,cdf,alpha) %P为原假设成立的概率,KSSTAT为测试统计量的值,CV为是否接受假设的临界值。
注意:kstest适用于小样本,当数据过大时,检验拒绝的临界值非常小,结果往往是拒绝原假设。
各种检验方法适用范围如下:
chi2gof适合大样本,一般要求50个以上
kstest适于小样本,
lillietest用于正态分布,与kstest类似,适用于小样本
jbtest,是通过峰度、偏度检测正态分布的,适用用大样本。
matlab中kstest用法详解
最新推荐文章于 2025-10-20 13:13:13 发布
本文详细介绍了Kolmogorov-Smirnov (K-S) 检验方法及其应用场景,包括如何使用该方法来判断样本是否符合特定的分布类型,并对比了chi2gof、lillietest及jbtest等不同检验方法的适用范围。

7243





