CF 242E XOR on Segment(二维线段树)

本文深入解析了信息技术领域的核心内容,包括但不限于前端开发、后端开发、移动开发、游戏开发、大数据开发、开发工具、嵌入式硬件、音视频基础、测试、基础运维、DevOps、操作系统、云计算厂商、自然语言处理、区块链、隐私计算、文档协作与知识管理等。通过详细解释各个技术领域的重要性和应用,为读者提供了一个全面的技术知识框架。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

XOR on Segment

time limit per test
4 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

You've got an array a, consisting of n integers a1, a2, ..., an. You are allowed to perform two operations on this array:

  1. Calculate the sum of current array elements on the segment [l, r], that is, count value al + al + 1 + ... + ar.
  2. Apply the xor operation with a given number x to each array element on the segment [l, r], that is, execute . This operation changes exactly r - l + 1 array elements.

Expression means applying bitwise xor operation to numbers x and y. The given operation exists in all modern programming languages, for example in language C++ and Java it is marked as "^", in Pascal — as "xor".

You've got a list of m operations of the indicated type. Your task is to perform all given operations, for each sum query you should print the result you get.

Input

The first line contains integer n (1 ≤ n ≤ 105) — the size of the array. The second line contains space-separated integers a1, a2, ..., an (0 ≤ ai ≤ 106) — the original array.

The third line contains integer m (1 ≤ m ≤ 5·104) — the number of operations with the array. The i-th of the following m lines first contains an integer ti (1 ≤ ti ≤ 2) — the type of the i-th query. If ti = 1, then this is the query of the sum, if ti = 2, then this is the query to change array elements. If the i-th operation is of type 1, then next follow two integers li, ri (1 ≤ li ≤ ri ≤ n). If the i-th operation is of type 2, then next follow three integers li, ri, xi (1 ≤ li ≤ ri ≤ n, 1 ≤ xi ≤ 106). The numbers on the lines are separated by single spaces.

Output

For each query of type 1 print in a single line the sum of numbers on the given segment. Print the answers to the queries in the order in which the queries go in the input.

Please, do not use the %lld specifier to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams, or the %I64d specifier.

Sample test(s)
Input
5
4 10 3 13 7
8
1 2 4
2 1 3 3
1 2 4
1 3 3
2 2 5 5
1 1 5
2 1 2 10
1 2 3
Output
26
22
0
34
11
Input
6
4 7 4 0 7 3
5
2 2 3 8
1 1 5
2 3 5 1
2 4 5 6
1 2 3
Output
38
28
 
题意:有两个操作:1.区间求和:求给定区间元素的和;区间更新:将给定区间里的所有数与一个给定的数异或。
思路:异或不满足分配律。每个数化成二进制时,每个位上的异或是独立的,这样我们就可以在线段树的节点上保存一定区间内的所有数的第i(0<i<20)位上的1的个数总和,求和时只要统计每位上1的个数,再化为十进制即可。用到二维线段树。
 
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <vector>
#include <cmath>
#include <cstdlib>
#define L(rt) (rt<<1)
#define R(rt) (rt<<1|1)
#define ll long long
using namespace std;

const int maxn=100005;
struct node
{
    int l,r;
    ll sum,xo;
}tree[22][4*maxn];
int num[maxn];
int n;
void build(int id,int l,int r,int rt)
{
    tree[id][rt].l=l;
    tree[id][rt].r=r;
    tree[id][rt].xo=0;
    if(l==r)
    {
        tree[id][rt].sum=(num[l]>>id)&1;
        return;
    }
    int mid=(l+r)>>1;
    build(id,l,mid,L(rt));
    build(id,mid+1,r,R(rt));
    tree[id][rt].sum=tree[id][L(rt)].sum+tree[id][R(rt)].sum;
}
void update(int id,int l,int r,int rt)
{
    if(tree[id][rt].l==l&&tree[id][rt].r==r)
    {
        tree[id][rt].sum=r-l+1-tree[id][rt].sum;
        tree[id][rt].xo^=1;
        return;
    }
    if(tree[id][rt].xo)
    {
        tree[id][L(rt)].sum=tree[id][L(rt)].r-tree[id][L(rt)].l+1-tree[id][L(rt)].sum;
        tree[id][L(rt)].xo^=1;
        tree[id][R(rt)].sum=tree[id][R(rt)].r-tree[id][R(rt)].l+1-tree[id][R(rt)].sum;
        tree[id][R(rt)].xo^=1;
        tree[id][rt].xo=0;
    }
    if(r<=tree[id][L(rt)].r) update(id,l,r,L(rt));
    else if(l>=tree[id][R(rt)].l) update(id,l,r,R(rt));
    else
    {
        update(id,l,tree[id][L(rt)].r,L(rt));
        update(id,tree[id][R(rt)].l,r,R(rt));
    }
    tree[id][rt].sum=tree[id][L(rt)].sum+tree[id][R(rt)].sum;
}
ll query(int id,int l,int r,int rt)
{
    if(tree[id][rt].l==l&&tree[id][rt].r==r)
    return tree[id][rt].sum;
    if(tree[id][rt].xo)
    {
        tree[id][L(rt)].sum=tree[id][L(rt)].r-tree[id][L(rt)].l+1-tree[id][L(rt)].sum;
        tree[id][L(rt)].xo^=1;
        tree[id][R(rt)].sum=tree[id][R(rt)].r-tree[id][R(rt)].l+1-tree[id][R(rt)].sum;
        tree[id][R(rt)].xo^=1;
        tree[id][rt].xo=0;
    }
    if(r<=tree[id][L(rt)].r) return query(id,l,r,L(rt));
    else if(l>=tree[id][R(rt)].l) return query(id,l,r,R(rt));
    else return query(id,l,tree[id][L(rt)].r,L(rt))+query(id,tree[id][R(rt)].l,r,R(rt));
}
int main()
{
    //freopen("1.txt","r",stdin);
    int a,b,op,m;
    ll x;
    while(cin>>n)
    {
        for(int i=1;i<=n;i++)
            cin>>num[i];

        for(int i=0;i<=20;i++)
        build(i,1,n,1);

        cin>>m;
        while(m--)
        {
            cin>>op;
            if(op==1)
            {
                cin>>a>>b;
                ll ans=0;
                for(int i=0;i<=20;i++)
                ans+=query(i,a,b,1)<<i;
                cout<<ans<<endl;
            }
            else
            {
                cin>>a>>b>>x;
                for(int i=0;i<=20;i++)
                if(x>>i&1)
                update(i,a,b,1);
            }
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值