【题目地址】
题意简述
给定你 n , m n,m n,m求:
∑ i 1 = 1 m ∑ i 2 = 1 m ⋯ ∑ i n = 1 m g c d ( i 1 , i 2 , ⋯   , i n ) \sum_{i_1=1}^m\sum_{i_2=1}^m\cdots\sum_{i_n=1}^mgcd(i_1,i_2,\cdots,i_n) i1=1∑mi2=1∑m⋯in=1∑mgcd(i1,i2,⋯,in)
对 2 64 2^{64} 264取模, n , m ≤ 1 0 11 n,m\leq 10^{11} n,m≤1011
这个题和CQOI2015选数很像,但是 1 0 11 10^{11} 1011显然要杜教筛,所以我们按照套路反演一波,枚举 g c d gcd gcd,原式转化为:
∑ d = 1 m d ∑ i 1 = 1 m ∑ i 2 = 1 m ⋯ ∑ i n = 1 m [ g c d ( i 1 , i 2 , ⋯   , i n ) = d ] ∑ d = 1 m d ∑ i 1 = 1 ⌊ m d ⌋ ∑ i 2 = 1 ⌊ m d ⌋ ⋯ ∑ i n = 1 ⌊ m d ⌋ [ g c d ( i 1 , i 2 , ⋯   , i n ) = 1 ] \sum_{d=1}^md\sum_{i_1=1}^m\sum_{i_2=1}^m\cdots\sum_{i_n=1}^m[gcd(i_1,i_2,\cdots,i_n)=d] \\ \sum_{d=1}^md\sum_{i_1=1}^{\lfloor\frac{m}{d}\rfloor}\sum_{i_2=1}^{\lfloor\frac{m}{d}\rfloor}\cdots\sum_{i_n=1}^{\lfloor\frac{m}{d}\rfloor}[gcd(i_1,i_2,\cdots,i_n)=1] d=1∑mdi1=1∑mi2=1∑m⋯in=1∑m[gcd(i1,i2,⋯,in)=d]d=1∑mdi1=1∑⌊dm⌋i2=1∑⌊dm⌋⋯in=1∑⌊dm⌋[gcd(i1,i2,⋯,in)=1]
将 μ \mu μ放入:
∑ d = 1 m d ∑ i 1 = 1 ⌊ m d ⌋ ∑ i 2 = 1 ⌊ m d ⌋ ⋯ ∑ i n = 1 ⌊ m d ⌋ ∑ w ∣ i 1 , w ∣ i 2 , ⋯   , w ∣ i n μ ( w ) ∑ d = 1 m d ∑ w = 1 ⌊ m d ⌋ μ ( w ) ⌊ m d w ⌋ n \sum_{d=1}^md\sum_{i_1=1}^{\lfloor\frac{m}{d}\rfloor}\sum_{i_2=1}^{\lfloor\frac{m}{d}\rfloor}\cdots\sum_{i_n=1}^{\lfloor\frac{m}{d}\rfloor}\sum_{w|i_1,w|i_2,\cdots,w|i_n}\mu(w) \\ \sum_{d=1}^md\sum_{w=1}^{\lfloor\frac{m}{d}\rfloor}\mu(w)\left\lfloor\frac{m}{dw}\right\rfloor^n d=1∑mdi1=1∑⌊dm⌋i2=1∑⌊dm⌋⋯in=1∑⌊dm⌋w∣i1,w∣i2,⋯,w∣in∑μ(w)d=1∑mdw=1∑⌊dm⌋μ(w)⌊dwm⌋n
根据套路,我们枚举 d w dw dw,令 T = d w T=dw T=dw得到:
∑ T = 1 m ( ⌊ m T ⌋ ) n ∑ d ∣ T μ ( d ) T d \sum_{T=1}^m\left(\left\lfloor\frac{m}{T}\right\rfloor\right)^n\sum_{d|T}\mu(d)\frac{T}{d} T=1∑m(⌊Tm⌋)nd∣T∑μ(d)dT
后面部分就是 μ ∗ i d = φ \mu * id=\varphi μ∗id=φ,所以原式变为:
∑ T = 1 m ( ⌊ m T ⌋ ) n φ ( T ) \sum_{T=1}^m\left(\left\lfloor\frac{m}{T}\right\rfloor\right)^n\varphi(T) T=1∑m(⌊Tm⌋)nφ(T)
所以杜教筛加快速幂即可,而模数十分特殊,所以直接用unsigned long long
,但是对于
n
×
(
n
+
1
)
2
\frac{n\times(n+1)}{2}
2n×(n+1)我们不再用逆元,而是直接判奇偶除过去。
∑ i = 1 n φ ( i ) = ∑ i = 1 n i − ∑ i = 2 n ∑ j = 1 ⌊ n i ⌋ φ ( j ) \sum_{i=1}^n\varphi(i)=\sum_{i=1}^ni-\sum_{i=2}^n\sum_{j=1}^{\lfloor\frac{n}{i}\rfloor}\varphi(j) i=1∑nφ(i)=i=1∑ni−i=2∑nj=1∑⌊in⌋φ(j)
上代码:
#include<map>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll unsigned long long
using namespace std;
const int M=1e7+1;
ll n,m;
ll fpow(ll a,ll b){
ll res=1llu;
for(;b;b>>=1,a*=a)if(b&1)res*=a;
return res;
}
ll prime[M],cnt,phi[M];
bool vis[M];
void init(){
phi[1]=1llu;
for(ll i=2;i<M;i++){
if(!vis[i]){
prime[++cnt]=i;
phi[i]=i-1llu;
}
for(ll j=1,v;j<=cnt&&i*prime[j]<M;j++){
v=i*prime[j];
vis[v]=1;
if(!(i%prime[j])){
phi[v]=phi[i]*prime[j];
break;
}
phi[v]=phi[i]*phi[prime[j]];
}
}
for(ll i=1;i<M;i++)phi[i]+=phi[i-1];
}
ll S(ll x){
if(x&1) return (x+1)/2*x;
else return x/2*(x+1);
}
map <ll,ll> mp;
ll calc(ll x){
if(x<M) return phi[x];
if(mp.count(x)) return mp[x];
ll ans=S(x);
for(ll i=2,j;i<=x;i=j+1){
j=(x/(x/i));
ans-=(j-i+1)*calc(x/i);
}
return mp[x]=ans;
}
ll solve(ll x,ll y){
ll ans=0;
for(ll i=1,j;i<=x;i=j+1){
j=(x/(x/i));
ans+=(calc(j)-calc(i-1))*fpow(x/i,y);
}
return ans;
}
int main(){
cin>>n>>m;
init();
cout<<solve(m,n)<<endl;
return 0;
}