In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
题意:根据题意套用矩阵快速幂模板,f[n]=f[n-1]+f[n-2];
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long ll;
const int INF=0x3f3f3f3f;
struct node
{
int m[2][2];
};
node mul(node a,node b)
{
node c;
for(int i=0;i<2;i++)
for(int j=0;j<2;j++)
{
c.m[i][j]=0;
for(int k=0;k<2;k++)
c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j])%10000;
}
return c;
}
int main()
{
int n;
while(~scanf("%d",&n)&&n!=-1)
{
if(n==0)
{
printf("0\n");
continue;
}
node a,b;
a.m[0][0]=1,a.m[0][1]=1,a.m[1][0]=1,a.m[1][1]=0;
b.m[0][0]=1,b.m[0][1]=0,b.m[1][0]=0,b.m[1][1]=1;
while(n)
{
if(n&1)
b=mul(a,b);
a=mul(a,a);
n=n>>1;
}
printf("%d\n",b.m[1][0]);
}
return 0;
}