Description
给出n条线段,问是否存在一条直线与这n条线段的任一条都相交
Input
第一行一整数T表示用例组数,每组用例首先输入一整数n表示线段数量,之后n行每行四个实数x1,y1,x2,y2分别表示线段两端点横纵坐标
Output
对于每组用例,如果存在一条直线与这n条线段的任一条都相交则输出YES!,否则输出NO!
Sample Input
3
2
1.0 2.0 3.0 4.0
4.0 5.0 6.0 7.0
3
0.0 0.0 0.0 1.0
0.0 1.0 0.0 2.0
1.0 1.0 2.0 1.0
3
0.0 0.0 0.0 1.0
0.0 2.0 0.0 3.0
1.0 1.0 2.0 1.0
Sample Output
Yes!
Yes!
No!
Solution
如果存在一条合法直线与任一条线段都相交,那么通过适当的旋转一定能让这条直线经过2n个端点中的某两个,所以只需要C(2n,2)的枚举两个端点判断过这两点的直线是否合法即可
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 111
#define eps 1e-8
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x=_x;y=_y;
}
Point operator -(const Point &b)const
{
return Point(x-b.x,y-b.y);
}
double operator ^(const Point &b)const
{
return x*b.y-y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x+y*b.y;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s=_s;e=_e;
}
};
double dis(Point a,Point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
//判断x的符号
int sgn(double x)
{
if(fabs(x)<eps) return 0;
if(x<0) return -1;
return 1;
}
//判断线段相交
bool inter(Line l1,Line l2)
{
return
sgn((l2.s-l1.s)^(l1.e-l1.s))*sgn((l2.e-l1.s)^(l1.e-l1.s))<=0;
//&&
// sgn((l1.s-l2.s)^(l2.e-l2.s))*sgn((l1.e-l2.s)^(l2.e-l2.s))<=0;
}
int T,n;
Point p[2*maxn];
Line l[maxn];
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%lf%lf%lf%lf",&p[2*i-1].x,&p[2*i-1].y,&p[2*i].x,&p[2*i].y);
l[i]=Line(p[2*i],p[2*i-1]);
}
int flag=0;
for(int i=1;i<=2*n&&!flag;i++)
for(int j=i+1;j<=2*n&&!flag;j++)
{
if(dis(p[i],p[j])<eps)continue;
Line t=Line(p[i],p[j]);
flag=1;
for(int k=1;k<=n;k++)
if(!inter(t,l[k]))
{
flag=0;
break;
}
if(flag)break;
}
printf("%s\n",flag?"Yes!":"No!");
}
return 0;
}