/*
Euler's totient function 欧拉函数
1.phi(x) = x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…(1-1/pn)(p1,p2...均为质因子)
2.phi(i * p) = phi(i) * p, for (i mod p) = 0
3.phi(i * p) = phi(i) * (p-1), for (i mod p) ≠0,
4.It suffices to show that
1) Phi(p) = p
2) Phi(p^k) = p^k - p^(k-1)
3) Phi(ab) = Phi(a) * Phi(b), for (a, b)=1
5.1和1互质即phi(1) = 1
*/
#include <bits/stdc++.h>
#define M (3000010)
using namespace std;
int n, k;
bool isp[M];
int p[M], phi[M];
void I(){
memset(isp, true, sizeof(isp));
isp[0] = isp[1] = false;
k = 1;
for(int i=2; i<M; i++){
if(isp[i]) p[k++] = i, phi[i] = i - 1;
for(int j=1; j<k && p[j]*i < M; j++){
isp[p[j]*i] = false;
if(i % p[j] == 0){
phi[i * p[j]] = phi[i] * p[j];
break;
}
else{
phi[i * p[j]] = phi[i] * (p[j] - 1);
}
}
}
}
int main(){
I();
int a, b;
while(scanf("%d%d", &a, &b) == 2){
long long ans = 0;
for(int i=a; i<=b; i++)
ans += (long long)phi[i];
cout << ans << endl;
}
}