【Java X 源码剖析】Collection的源码分析-JDK1.8-仍在更新

本文深入剖析Java Collection接口及其主要实现类,包括HashSet、LinkedHashSet、TreeSet、ArrayList、LinkedList和Vector。讨论了它们的内部结构、特点以及关键方法的实现,如HashSet的HashMap底层实现、TreeSet的TreeMap依赖、ArrayList的动态扩容等。同时,文章也提及了过时的Vector类和其线程安全性问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Collection接口下的结构

 

目录

Set

HashSet

LinkedHashSet(父类HashSet,底层Map为LinkedHashMap)

TreeSet(依赖TreeMap)

ConcurrentSkipListSet

 

List-Queue

PriorityQueue(默认小顶堆)

①public boolean offer(E e) / public boolean add(E e)

List

LinkedList

addAll(int index, Collection c):

①public boolean add(E e) 

②public boolean remove(Object o)

ArrayList:动态扩容

①public boolean add(E e)

②public E set(int index, E element) 

③public int indexOf(Object o) :可以查找null元素,意味ArrayList可以存放null

④public E get(int index)

⑤public E remove(int index):删除时会移动大量元素

Vector(过时的类,每个方法都有Synchronized)[可以存null]

Vector属性

构造函数

 

Stack

 

 


Set

HashSet

一些属性

*所有的键都有同一个值PRESENT

public class HashSet<E>
    extends AbstractSet<E>
    implements Set<E>, Cloneable, java.io.Serializable
{
    private transient HashMap<E,Object> map;

    // Dummy value to associate with an Object in the backing Map
    //用作所有键的值,因为HashSet中只存键不存值
    private static final Object PRESENT = new Object();
}

方法都是调用HashMap中的方法,不再重复


    public int size() {
        return map.size();
    }

    public boolean isEmpty() {
        return map.isEmpty();
    }


    public boolean contains(Object o) {
        return map.containsKey(o);
    }


    public boolean add(E e) {
        return map.put(e, PRESENT)==null;
    }

    public boolean remove(Object o) {
        return map.remove(o)==PRESENT;
    }

    public void clear() {
        map.clear();
    }

 

 

LinkedHashSet(父类HashSet,底层Map为LinkedHashMap)

一些属性

public class LinkedHashSet<E>
    extends HashSet<E>
    implements Set<E>, Cloneable, java.io.Serializable {

    //没有属性,都是调用父类的属性

}

构造函数

调用父类的构造函数,使其底层实现变成LinkedHashMap

//两个方法调用同一个父类的构造方法
public LinkedHashSet(int initialCapacity, float loadFactor) {
        super(initialCapacity, loadFactor, true);
    }

public LinkedHashSet(int initialCapacity) {
        super(initialCapacity, .75f, true);
    }

public LinkedHashSet() {
        super(16, .75f, true);
    }

public LinkedHashSet(Collection<? extends E> c) {
        super(Math.max(2*c.size(), 11), .75f, true);
        addAll(c);
    }
HashSet(int initialCapacity, float loadFactor, boolean dummy) {
        map = new LinkedHashMap<>(initialCapacity, loadFactor);
    }

 

 

TreeSet(依赖TreeMap)

一些属性

public class TreeSet<E> extends AbstractSet<E>
    implements NavigableSet<E>, Cloneable, java.io.Serializable
{
    /**
     * The backing map.
     */
    private transient NavigableMap<E,Object> m;

    // Dummy value to associate with an Object in the backing Map
    //同样的套路:所有键的value都是PRESENT
    private static final Object PRESENT = new Object();
}

 

构造函数

    public TreeSet(Comparator<? super E> comparator) {
        this(new TreeMap<>(comparator));
    }

    public TreeSet() {
        this(new TreeMap<E,Object>());
    }

    //还有别的构造方法就不一一列举了

 

*底层方法实现同TreeMap

    public int size() {
        return m.size();
    }

    public boolean isEmpty() {
        return m.isEmpty();
    }

    public boolean contains(Object o) {
        return m.containsKey(o);
    }


    public boolean add(E e) {
        return m.put(e, PRESENT)==null;
    }


    public boolean remove(Object o) {
        return m.remove(o)==PRESENT;
    }


    public void clear() {
        m.clear();
    }

 

 

 

ConcurrentSkipListSet

 

一些属性

 

构造函数

 

 

 

 

List-Queue

PriorityQueue(默认小顶堆)

①public boolean offer(E e) / public boolean add(E e)

    public boolean add(E e) {
        return offer(e);
    }

    public boolean offer(E e) {
        if (e == null)
            throw new NullPointerException();
        modCount++;
        int i = size;
        if (i >= queue.length)
            grow(i + 1);
        size = i + 1;
        if (i == 0)
            queue[0] = e;
        else
            siftUp(i, e);
        return true;
    }

    /**
     * Increases the capacity of the array.
     *
     * @param minCapacity the desired minimum capacity
     */
    //数组容量已经不满足下标了,遂扩容
    private void grow(int minCapacity) {
        int oldCapacity = queue.length;

        // Double size if small; else grow by 50%
        //如果原本容量小于64就变2n+2;否则变1.5n
        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
                                         (oldCapacity + 2) :
                                         (oldCapacity >> 1));
        // overflow-conscious code
        //数组最大值 or Integer_MAX_VALUE
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);
        queue = Arrays.copyOf(queue, newCapacity);
    }

    private void siftUp(int k, E x) {
        if (comparator != null)
            siftUpUsingComparator(k, x);
        else
            siftUpComparable(k, x);
    }

    //有比较器(默认小顶堆) k为x在数组中的下标
    @SuppressWarnings("unchecked")
    private void siftUpUsingComparator(int k, E x) {
        while (k > 0) {
            //父亲结点数组下标
            int parent = (k - 1) >>> 1;
            Object e = queue[parent];
            //比父亲大,小顶堆,就不用在往上移了
            if (comparator.compare(x, (E) e) >= 0)
                break;
            //暂时不用赋值x,最后循环出去再赋值
            queue[k] = e;
            k = parent;
        }
        queue[k] = x;
    }

    //Queue没有比较器,使用插入的对象的比较器
    @SuppressWarnings("unchecked")
    private void siftUpComparable(int k, E x) {
        Comparable<? super E> key = (Comparable<? super E>) x;
        while (k > 0) {
            int parent = (k - 1) >>> 1;
            Object e = queue[parent];
            if (key.compareTo((E) e) >= 0)
                break;
            queue[k] = e;
            k = parent;
        }
        queue[k] = key;
    }

 

 

 

List

LinkedList

*可以存null,不支持随机读取,可以不用考虑扩容

 

一些属性

public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
    transient int size = 0;

    /**
     * Pointer to first node.
     * Invariant: (first == null && last == null) ||
     *            (first.prev == null && first.item != null)
     */
    transient Node<E> first;

    /**
     * Pointer to last node.
     * Invariant: (first == null && last == null) ||
     *            (last.next == null && last.item != null)
     */
    transient Node<E> last;
}
private static class Node<E> {
        E item;
        Node<E> next;
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

 

构造函数

    public LinkedList() {

    }
    
    //调用无参构造器,然后将集合c中元素添加到LinkedList中
    public LinkedList(Collection<? extends E> c) {
        this();
        addAll(c);
    }


    public boolean addAll(Collection<? extends E> c) {
        //默认从尾结点开始插入集合中数据
        return addAll(size, c);
    }

    //返回false表示集合中没有数据,返回true表示添加成功
    public boolean addAll(int index, Collection<? extends E> c) {
        //可以检查是否超过size或者小于0(不同于ArrayList只能检查是否超过size)
        checkPositionIndex(index);
        
        //熟悉的套路:将集合转换成Object类型数组
        Object[] a = c.toArray();
        int numNew = a.length;
        if (numNew == 0)
            return false;

        Node<E> pred, succ;
        if (index == size) {
            //直接从尾结点插入
            succ = null;
            pred = last;
        } else {
            //将集合中数据从第index个结点后开始插入
            //获取第index个node(如果小于size/2,从头找;如果大于size/2,从尾找)
            succ = node(index);
            pred = succ.prev;
        }

        //依次插入到链表尾
        for (Object o : a) {
            @SuppressWarnings("unchecked") E e = (E) o;
            Node<E> newNode = new Node<>(pred, e, null);
            if (pred == null)
                first = newNode;
            else
                pred.next = newNode;
            pred = newNode;
        }

        if (succ == null) {
            last = pred;
        } else {
            pred.next = succ;
            succ.prev = pred;
        }

        size += numNew;
        modCount++;
        return true;
    }

    private void checkPositionIndex(int index) {
        if (!isPositionIndex(index))
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    /**
     * Tells if the argument is the index of a valid position for an
     * iterator or an add operation.
     */
    //添加操作或者迭代器时使用
    private boolean isPositionIndex(int index) {
        return index >= 0 && index <= size;
    }

addAll(int index, Collection<? extends E> c):

 

根据index获取到第index个结点方法

Node<E> node(int index) {
        // assert isElementIndex(index);

        //分为左半和右半,提高查找效率
        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }

 

①public boolean add(E e) 

public boolean add(E e) {
        linkLast(e);
        return true;
    }

/**
     * Links e as last element.
     */
    void linkLast(E e) {
        final Node<E> l = last;
        final Node<E> newNode = new Node<>(l, e, null);
        last = newNode;
        //如果链表原本为空(last/first都为空,上面为last赋值,下面为first赋值,指向同一节点)
        if (l == null)
            first = newNode;
        else
            l.next = newNode;
        size++;
        modCount++;
    }

 

②public boolean remove(Object o)

public boolean remove(Object o) {
        if (o == null) {
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }

    /**
     * Unlinks non-null node x.
     */
    E unlink(Node<E> x) {
        // assert x != null;
        final E element = x.item;
        final Node<E> next = x.next;
        final Node<E> prev = x.prev;

        //1.前驱结点空-->删除的是头结点
        if (prev == null) {
            first = next;
        } else {
            prev.next = next;
            x.prev = null;
        }

        //2.后继结点为空-->删除的是尾结点
        if (next == null) {
            last = prev;
        } else {
            next.prev = prev;
            x.next = null;
        }

        //3.结点值设置为空
        x.item = null;

        size--;
        modCount++;
        return element;
    }

 

 

 

ArrayList:动态扩容

*可以插入null元素,还可以任意随机读取,不好的地方就是删除时需要移动大量元素

 

一些属性

public class ArrayList<E> extends AbstractList<E>
        implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
     /**
     * The size of the ArrayList (the number of elements it contains).
     * 实际元素数量
     * @serial
     */
    private int size;
   
     /**
     * Default initial capacity.
     * 默认初始化容量
     */
    private static final int DEFAULT_CAPACITY = 10;

    /**
     * Shared empty array instance used for empty instances.
     */
    //用来赋值给elementData元素数组
    private static final Object[] EMPTY_ELEMENTDATA = {};

    /**
     * Shared empty array instance used for default sized empty instances. We
     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
     * first element is added.
     */
    //当使用无参构造器,用来赋值给elementData元素数组
    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

    /**
     * The array buffer into which the elements of the ArrayList are stored.
     * The capacity of the ArrayList is the length of this array buffer. Any
     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
     * will be expanded to DEFAULT_CAPACITY when the first element is added.
     * 元素数组
     */
    //存的是Object,get的时候会偷偷转型
    transient Object[] elementData; // non-private to simplify nested class access
}

 

构造函数

public ArrayList(int initialCapacity) {
        if (initialCapacity > 0) {    //初始容量>0
            this.elementData = new Object[initialCapacity];
        } else if (initialCapacity == 0) {    //初始容量为0,返回空对象数组
            this.elementData = EMPTY_ELEMENTDATA;
        } else {    //初始容量<0,抛出非法初始容量异常
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        }
    }

    /**
     * Constructs an empty list with an initial capacity of ten.
     */
    public ArrayList() {
        //未赋值参数,会给elementData设置为空数组
        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
    }

    /**
     * Constructs a list containing the elements of the specified
     * collection, in the order they are returned by the collection's
     * iterator.
     *
     * @param c the collection whose elements are to be placed into this list
     * @throws NullPointerException if the specified collection is null
     */
    public ArrayList(Collection<? extends E> c) {
        //将传递进来的集合转换成数组
        elementData = c.toArray();
        //如果数组不为空
        if ((size = elementData.length) != 0) {
            // c.toArray might (incorrectly) not return Object[] (see 6260652)
            //转换的数组可能没转换成Object类型数组
            if (elementData.getClass() != Object[].class)
                //采用复制的方式,将元素复制进elementData
                elementData = Arrays.copyOf(elementData, size, Object[].class);
        } else {
            // replace with empty array.
            //如果集合为空,就传递空数组给元素数组
            this.elementData = EMPTY_ELEMENTDATA;
        }
    }

 

①public boolean add(E e)

/**
     * Appends the specified element to the end of this list.
     * 将指定元素添加到此列表的末尾
     * @param e element to be appended to this list
     * @return <tt>true</tt> (as specified by {@link Collection#add})
     */
    public boolean add(E e) {
        ensureCapacityInternal(size + 1);  // Increments modCount!!
        elementData[size++] = e;    
        return true;
    }

//minCapacity 指的是所需的最小容量
private void ensureCapacityInternal(int minCapacity) {
        ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
    }

private static int calculateCapacity(Object[] elementData, int minCapacity) {
        //判断是否为空数组(无参构造器构造的ArrayList)
        if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
            return Math.max(DEFAULT_CAPACITY, minCapacity);
        }
        return minCapacity;
    }


private void ensureExplicitCapacity(int minCapacity) {
        //熟悉的操作次数+1
        modCount++;

        // overflow-conscious code
        //溢出
        if (minCapacity - elementData.length > 0)
            grow(minCapacity);
    }

/**
     * Increases the capacity to ensure that it can hold at least the
     * number of elements specified by the minimum capacity argument.
     *
     * @param minCapacity the desired minimum capacity
     */
    private void grow(int minCapacity) {
        // overflow-conscious code
        int oldCapacity = elementData.length;

        //新容量为旧容量的1.5倍
        int newCapacity = oldCapacity + (oldCapacity >> 1);

        //新容量小于参数指定容量
        //也就是空数组插入时,直接将容量从0扩充成10,否则会变成1,这样新数组一开始插入的时候很容易触发扩容
        if (newCapacity - minCapacity < 0)
            newCapacity = minCapacity;

        //新容量超过了数组能接受的最大容量
        if (newCapacity - MAX_ARRAY_SIZE > 0)
            newCapacity = hugeCapacity(minCapacity);

        // minCapacity is usually close to size, so this is a win:
        //拷贝+扩容
        elementData = Arrays.copyOf(elementData, newCapacity);
    }

private static int hugeCapacity(int minCapacity) {
        if (minCapacity < 0) // overflow
            throw new OutOfMemoryError();
        return (minCapacity > MAX_ARRAY_SIZE) ?
            Integer.MAX_VALUE :
            MAX_ARRAY_SIZE;
    }

 

*为了防止ArrayList在初期插入数据时频繁扩容,所以对于没有设置长度限制的,第一次插入数据就给予了默认长度(10)

 

 

②public E set(int index, E element) 

/**
     * Replaces the element at the specified position in this list with
     * the specified element.
     *
     * @param index index of the element to replace
     * @param element element to be stored at the specified position
     * @return the element previously at the specified position
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    //将列表中指定元素替换
    public E set(int index, E element) {
        //检查index合法性
        rangeCheck(index);

        //三部曲:得到旧值,替换旧值,返回旧值
        E oldValue = elementData(index);
        elementData[index] = element;
        return oldValue;
    }

/**
     * Checks if the given index is in range.  If not, throws an appropriate
     * runtime exception.  This method does *not* check if the index is
     * negative: It is always used immediately prior to an array access,
     * which throws an ArrayIndexOutOfBoundsException if index is negative.
     */
    //不检查负数,似乎交给数组类来进行检查了?如果是负数抛出ArrayIndexOutOfBoundsException,和下面这个异常不一样
    private void rangeCheck(int index) {
        if (index >= size)
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

 

③public int indexOf(Object o) :可以查找null元素,意味ArrayList可以存放null

/**
     * Returns the index of the first occurrence of the specified element
     * in this list, or -1 if this list does not contain the element.
     * More formally, returns the lowest index <tt>i</tt> such that
     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
     * or -1 if there is no such index.
     */
    //返回第一个o的数组下标,如果不存在就返回-1
    public int indexOf(Object o) {
        if (o == null) {
            for (int i = 0; i < size; i++)
                if (elementData[i]==null)
                    return i;
        } else {
            for (int i = 0; i < size; i++)

                //null就用不了equals方法了
                if (o.equals(elementData[i]))
                    return i;
        }
        return -1;
    }

 

④public E get(int index)

/**
     * Returns the element at the specified position in this list.
     *
     * @param  index index of the element to return
     * @return the element at the specified position in this list
     * @throws IndexOutOfBoundsException {@inheritDoc}
     */
    //返回指定位置的元素
    public E get(int index) {
        //index范围检查
        rangeCheck(index);

        return elementData(index);
    }

隐藏了向下转型的细节(将Object转成了E)

@SuppressWarnings("unchecked")
    E elementData(int index) {
        return (E) elementData[index];
    }

 

⑤public E remove(int index):删除时会移动大量元素

public E remove(int index) {
        rangeCheck(index);

        modCount++;    //和添加一样,操作次数+1
        E oldValue = elementData(index);

        //需要移动的元素个数
        int numMoved = size - index - 1;
        if (numMoved > 0)
            System.arraycopy(elementData, index+1, elementData, index,
                             numMoved);
        //真正意义上的删除,将要删除的元素设置为null,这样才gc,而不是仅仅改一个size
        elementData[--size] = null; // clear to let GC do its work

        return oldValue;
    }

通过本地数组复制函数来进行移动元素

    /*            需要被复制的数组
     * @param      src      the source array.
     *            从哪个元素开始复制
     * @param      srcPos   starting position in the source array.
     *            需要被复制到哪个数组
     * @param      dest     the destination array.
     *            从新数组的哪个位置赋值
     * @param      destPos  starting position in the destination data.
     *            需要复制的数
     * @param      length   the number of array elements to be copied.
     */
    public static native void arraycopy(Object src,  int  srcPos,
                                        Object dest, int destPos,
                                        int length);

 

Vector(过时的类,每个方法都有Synchronized)[可以存null]

首先说一下Vector是否线程安全的结论:

Vector 和 ArrayList 实现了同一接口 List, 但所有的 Vector 的方法都具有 synchronized 关键修饰,也就单一操作还是线程安全的。但对于复合操作,Vector 仍然需要进行同步处理

复合操作:

if (!vector.contains(element)) 
    vector.add(element); 
    ...
}

在执行contains()和add()方法时,可以保证没有方法在使用Vector对象,都是原子性操作(Synchronized作用)。

但是执行完contains(),无法保证下一个执行的就是add()

要想实现复合操作的线程安全,还得用Synchronized再加一个锁,锁住Vector对象

Synchronized(vector){
    boolean b = vector.contains(element);
    if(!b)vector.add(element);
}

这也就是Vector被弃用原因明明一个锁就够,还得两个锁才能解决线程安全问题

 

Vector属性

public class Vector<E>
    extends AbstractList<E>
    implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
    /**
     * The array buffer into which the components of the vector are
     * stored. The capacity of the vector is the length of this array buffer,
     * and is at least large enough to contain all the vector's elements.
     *
     * <p>Any array elements following the last element in the Vector are null.
     *
     * @serial
     */
    //Vector底层实现数组
    protected Object[] elementData;

    /**
     * The number of valid components in this {@code Vector} object.
     * Components {@code elementData[0]} through
     * {@code elementData[elementCount-1]} are the actual items.
     *
     * @serial
     */
    //实际元素个数
    protected int elementCount;

    /**
     * The amount by which the capacity of the vector is automatically
     * incremented when its size becomes greater than its capacity.  If
     * the capacity increment is less than or equal to zero, the capacity
     * of the vector is doubled each time it needs to grow.
     *
     * @serial
     */
    //如果扩容未指定此参数,Vector就增长为原来两倍
    //如果扩容指定此参数(capacitryIncrement>0),就增加capacityIncrement这么多容量
    protected int capacityIncrement;
}

 

构造函数

    //下面两个构造器的最终构造器
    //设置初始参数和增长容量大小,以及新建数组空间
    public Vector(int initialCapacity, int capacityIncrement) {
        super();
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal Capacity: "+
                                               initialCapacity);
        this.elementData = new Object[initialCapacity];
        this.capacityIncrement = capacityIncrement;
    }

    /**
     * Constructs an empty vector with the specified initial capacity and
     * with its capacity increment equal to zero.
     *
     * @param   initialCapacity   the initial capacity of the vector
     * @throws IllegalArgumentException if the specified initial capacity
     *         is negative
     */
    //指定数组空间大小,没有指定增加容量大小
    public Vector(int initialCapacity) {
        this(initialCapacity, 0);
    }

    /**
     * Constructs an empty vector so that its internal data array
     * has size {@code 10} and its standard capacity increment is
     * zero.
     */
    //数组空间为10,没有设定增加容量大小
    public Vector() {
        this(10);
    }

    /**
     * Constructs a vector containing the elements of the specified
     * collection, in the order they are returned by the collection's
     * iterator.
     *
     * @param c the collection whose elements are to be placed into this
     *       vector
     * @throws NullPointerException if the specified collection is null
     * @since   1.2
     */
    //还是熟悉的套路:c.toArray可能不是Object对象数组;不是的话就手动转(Arrays.copyOf)
    public Vector(Collection<? extends E> c) {
        elementData = c.toArray();
        elementCount = elementData.length;
        // c.toArray might (incorrectly) not return Object[] (see 6260652)
        if (elementData.getClass() != Object[].class)
            elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
    }

Vector的方法实现还是比较简单的,就不一一列出了。

 

Stack

Stack类的代码就只有这么多,还是比较简单的。

通过继承Vector(数组)来实现,主要是pop()

public
class Stack<E> extends Vector<E> {
    /**
     * Creates an empty Stack.
     */
    public Stack() {
    }

    //直接添加到数组
    public E push(E item) {
        addElement(item);

        return item;
    }


    //很好理解,拿数组大小最后一个元素
    public synchronized E pop() {
        E       obj;
        int     len = size();

        obj = peek();

        //检查len-1合法性,将最后一个元素置为空(gc),数量-1
        removeElementAt(len - 1);

        return obj;
    }


    public synchronized E peek() {
        int     len = size();

        if (len == 0)
            throw new EmptyStackException();
        return elementAt(len - 1);
    }


    public boolean empty() {
        return size() == 0;
    }

    /**
     * Returns the 1-based position where an object is on this stack.
     * If the object <tt>o</tt> occurs as an item in this stack, this
     * method returns the distance from the top of the stack of the
     * occurrence nearest the top of the stack; the topmost item on the
     * stack is considered to be at distance <tt>1</tt>. The <tt>equals</tt>
     * method is used to compare <tt>o</tt> to the
     * items in this stack.
     *
     * @param   o   the desired object.
     * @return  the 1-based position from the top of the stack where
     *          the object is located; the return value <code>-1</code>
     *          indicates that the object is not on the stack.
     */
    //返回距离栈顶的距离
    public synchronized int search(Object o) {
        int i = lastIndexOf(o);

        if (i >= 0) {
            return size() - i;
        }
        return -1;
    }


}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值