For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174-- the black hole of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0,104).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation N - N = 0000. Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
-----------------------------------这是题目和解题的分割线-----------------------------------
首先要排序,那肯定得是数组才方便操作,其次相减得用到整型,所以需要整型和数组相互转换一下。
#include<cstdio>
#include<algorithm>
using namespace std;
int s[10000];
bool cmp(int a,int b)
{
return a>b;
}
//整型转数组
void intToArray(int x)
{
for(int i=0;i<4;i++)
{
s[i] = x%10;
x = x/10;
}
}
//数组转整型
int arrayToInt(int s[])
{
return s[0]*1000+s[1]*100+s[2]*10+s[3];
}
int main()
{
int x;
scanf("%d",&x);
//do-while至少保证一次输出,不然会漏掉x=6174的情况
do
{
intToArray(x);
sort(s,s+4); //转成数组排序,s2是升序
int s2 = arrayToInt(s);
sort(s,s+4,cmp); //降序
int s1 = arrayToInt(s);
if(s1-s2==0)
{
printf("%04d - %04d = 0000\n",s1,s2);
return 0;
}
//记得不足补零
printf("%04d - %04d = %04d\n",s1,s2,s1-s2);
x = s1-s2;
}while(x!=6174);
return 0;
}
本文介绍了一种数学现象,即四数黑洞现象,通过不断对四位数进行升序和降序排列并相减,最终将陷入一个固定的数值6174,即Kaprekar常数。文章提供了详细的算法实现,展示了如何从任意四位数出发,通过一系列计算步骤到达这个神秘的黑洞数值。
884

被折叠的 条评论
为什么被折叠?



