!pip install numpy
Requirement already satisfied: numpy in c:\users\lenovo\anaconda3\lib\site-packages (1.19.2)
!pip install pandas
Requirement already satisfied: pandas in c:\users\lenovo\anaconda3\lib\site-packages (1.1.3)
Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\lenovo\anaconda3\lib\site-packages (from pandas) (2.8.1)
Requirement already satisfied: numpy>=1.15.4 in c:\users\lenovo\anaconda3\lib\site-packages (from pandas) (1.19.2)
Requirement already satisfied: pytz>=2017.2 in c:\users\lenovo\anaconda3\lib\site-packages (from pandas) (2020.1)
Requirement already satisfied: six>=1.5 in c:\users\lenovo\anaconda3\lib\site-packages (from python-dateutil>=2.7.3->pandas) (1.15.0)
!pip install matplotlib
Requirement already satisfied: matplotlib in c:\users\lenovo\anaconda3\lib\site-packages (3.3.2)
Requirement already satisfied: cycler>=0.10 in c:\users\lenovo\anaconda3\lib\site-packages (from matplotlib) (0.10.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in c:\users\lenovo\anaconda3\lib\site-packages (from matplotlib) (2.4.7)
Requirement already satisfied: pillow>=6.2.0 in c:\users\lenovo\anaconda3\lib\site-packages (from matplotlib) (8.0.1)
Requirement already satisfied: certifi>=2020.06.20 in c:\users\lenovo\anaconda3\lib\site-packages (from matplotlib) (2020.6.20)
Requirement already satisfied: numpy>=1.15 in c:\users\lenovo\anaconda3\lib\site-packages (from matplotlib) (1.19.2)
Requirement already satisfied: kiwisolver>=1.0.1 in c:\users\lenovo\anaconda3\lib\site-packages (from matplotlib) (1.3.0)
Requirement already satisfied: python-dateutil>=2.1 in c:\users\lenovo\anaconda3\lib\site-packages (from matplotlib) (2.8.1)
Requirement already satisfied: six in c:\users\lenovo\anaconda3\lib\site-packages (from cycler>=0.10->matplotlib) (1.15.0)
# 引入相关科学计算包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use("ggplot")
import seaborn as sns
from sklearn import datasets
boston = datasets.load_boston() # 返回一个类似于字典的类
X = boston.data
y = boston.target
features = boston.feature_names
boston_data = pd.DataFrame(X,columns=features)
boston_data["Price"] = y
boston_data.head()
| CRIM | ZN | INDUS | CHAS | NOX | RM | AGE | DIS | RAD | TAX | PTRATIO | B | LSTAT | Price | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0.00632 | 18.0 | 2.31 | 0.0 | 0.538 | 6.575 | 65.2 | 4.0900 | 1.0 | 296.0 | 15.3 | 396.90 | 4.98 | 24.0 |
| 1 | 0.02731 | 0.0 | 7.07 | 0.0 | 0.469 | 6.421 | 78.9 | 4.9671 | 2.0 | 242.0 | 17.8 | 396.90 | 9.14 | 21.6 |
| 2 | 0.02729 | 0.0 | 7.07 | 0.0 | 0.469 | 7.185 | 61.1 | 4.9671 | 2.0 | 242.0 | 17.8 | 392.83 | 4.03 | 34.7 |
| 3 | 0.03237 | 0.0 | 2.18 | 0.0 | 0.458 | 6.998 | 45.8 | 6.0622 | 3.0 | 222.0 | 18.7 | 394.63 | 2.94 | 33.4 |
| 4 | 0.06905 | 0.0 | 2.18 | 0.0 | 0.458 | 7.147 | 54.2 | 6.0622 | 3.0 | 222.0 | 18.7 | 396.90 | 5.33 | 36.2 |
sns.scatterplot(boston_data['NOX'],boston_data['Price'],color="r",alpha=0.6)
plt.title("Price~NOX")
plt.show()
C:\Users\lenovo\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.
warnings.warn(
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-K8BUe6GK-1616577548323)(output_5_1.png)]
from sklearn import datasets
iris = datasets.load_iris()
X = iris.data
y = iris.target
features = iris.feature_names
iris_data = pd.DataFrame(X,columns=features)
iris_data['target'] = y
iris_data.head()
| sepal length (cm) | sepal width (cm) | petal length (cm) | petal width (cm) | target | |
|---|---|---|---|---|---|
| 0 | 5.1 | 3.5 | 1.4 | 0.2 | 0 |
| 1 | 4.9 | 3.0 | 1.4 | 0.2 | 0 |
| 2 | 4.7 | 3.2 | 1.3 | 0.2 | 0 |
| 3 | 4.6 | 3.1 | 1.5 | 0.2 | 0 |
| 4 | 5.0 | 3.6 | 1.4 | 0.2 | 0 |
# 可视化特征
marker = ['s','x','o']
for index,c in enumerate(np.unique(y)):
plt.scatter(x=iris_data.loc[y==c,"sepal length (cm)"],y=iris_data.loc[y==c,"sepal width (cm)"],alpha=0.9,label=c,marker=marker[c])
plt.xlabel("sepal length (cm)")
plt.ylabel("sepal width (cm)")
plt.legend()
plt.show()
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NSwUJolW-1616577548326)(output_7_0.png)]
# 生成月牙型非凸集
from sklearn import datasets
x, y = datasets.make_moons(n_samples=4000, shuffle=True,
noise=0.05, random_state=None)
for index,c in enumerate(np.unique(y)):
plt.scatter(x[y==c,0],x[y==c,1],s=7)
plt.show()
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-y1F53mnY-1616577548328)(output_8_0.png)]
from sklearn import datasets
x, y = datasets.make_blobs(n_samples=5000, n_features=2, centers=3)
for index,c in enumerate(np.unique(y)):
plt.scatter(x[y==c,0],x[y==c,1],s=7)
plt.show()
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Tq4trmmQ-1616577548331)(output_9_0.png)]
# 生成符合正态分布的聚类数据
from sklearn import datasets
x, y = datasets.make_blobs(n_samples=1000, n_features=2, centers=4)
for index,c in enumerate(np.unique(y)):
plt.scatter(x[y==c, 1], x[y==c, 0],s=7)
plt.show(

最低0.47元/天 解锁文章
9840

被折叠的 条评论
为什么被折叠?



