[算法学习笔记] 《Hello算法》第8章 堆

前言

本系列为《Hello算法》学习笔记,仅供学习,不做商用,如有侵权,联系我删除即可!

堆就像是山岳峰峦,层叠起伏、形态各异。

座座山峰高低错落,而最高的山峰总是最先映入眼帘。

8.1   堆

堆(heap)是一种满足特定条件的完全二叉树,主要可分为两种类型,如下图所示。

  • 小顶堆(min heap)任意节点的值 ≤ 其子节点的值
  • 大顶堆(max heap)任意节点的值 ≥ 其子节点的值

堆作为完全二叉树的一个特例,具有以下特性。

  • 最底层节点靠左填充,其他层的节点都被填满。
  • 我们将二叉树的根节点称为“堆顶”,将底层最靠右的节点称为“堆底”。
  • 对于大顶堆(小顶堆),堆顶元素(根节点)的值是最大(最小)的。

8.1.1   堆的常用操作

许多编程语言提供的是优先队列(priority queue),这是一种抽象的数据结构,定义为具有优先级排序的队列

堆通常用于实现优先队列,大顶堆相当于元素按从大到小的顺序出队的优先队列。从使用角度来看,我们可以将“优先队列”和“堆”看作等价的数据结构

堆的常用操作见下表,方法名需要根据编程语言来确定。

在实际应用中,我们可以直接使用编程语言提供的堆类(或优先队列类)

类似于排序算法中的“从小到大排列”和“从大到小排列”,我们可以通过设置一个 flag 或修改 Comparator 实现“小顶堆”与“大顶堆”之间的转换。代码如下所示:

# 初始化小顶堆
min_heap, flag = [], 1
# 初始化大顶堆
max_heap, flag = [], -1

# Python 的 heapq 模块默认实现小顶堆
# 考虑将“元素取负”后再入堆,这样就可以将大小关系颠倒,从而实现大顶堆
# 在本示例中,flag = 1 时对应小顶堆,flag = -1 时对应大顶堆

# 元素入堆
heapq.heappush(max_heap, flag * 1)
heapq.heappush(max_heap, flag * 3)
heapq.heappush(max_heap, flag * 2)
heapq.heappush(max_heap, flag * 5)
heapq.heappush(max_heap, flag * 4)

# 获取堆顶元素
peek: int = flag * max_heap[0] # 5

# 堆顶元素出堆
# 出堆元素会形成一个从大到小的序列
val = flag * heapq.heappop(max_heap) # 5
val = flag * heapq.heappop(max_heap) # 4
val = flag * heapq.heappop(max_heap) # 3
val = flag * heapq.heappop(max_heap) # 2
val = flag * heapq.heappop(max_heap) # 1

# 获取堆大小
size: int = len(max_heap)

# 判断堆是否为空
is_empty: bool = not max_heap

# 输入列表并建堆
min_heap: list[int] = [1, 3, 2, 5, 4]
heapq.heapify(min_heap)

8.1.2   堆的实现

下文实现的是大顶堆。若要将其转换为小顶堆,只需将所有大小逻辑判断进行逆转(例如,将 ≥ 替换为 ≤ )

1.   堆的存储与表示

完全二叉树非常适合用数组来表示。由于堆正是一种完全二叉树,因此我们将采用数组来存储堆

当使用数组表示二叉树时,元素代表节点值,索引代表节点在二叉树中的位置。节点指针通过索引映射公式来实现

给定索引 i ,其左子节点的索引为 2i+1 ,右子节点的索引为 2i+2 ,父节点的索引为 (i−1)/2(向下整除)。当索引越界时,表示空节点或节点不存在。

def left(self, i: int) -> int:
    """获取左子节点的索引"""
    return 2 * i + 1

def right(self, i: int) -> int:
    """获取右子节点的索引"""
    return 2 * i + 2

def parent(self, i: int) -> int:
    """获取父节点的索引"""
    return (i - 1) // 2  # 向下整除

2.   访问堆顶元素

堆顶元素即为二叉树的根节点,也就是列表的首个元素

def peek(self) -> int:
    """访问堆顶元素"""
    return self.max_heap[0]

3.   元素入堆

给定元素 val ,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能已被破坏因此需要修复从插入节点到根节点的路径上的各个节点,这个操作被称为堆化(heapify)

考虑从入堆节点开始,从底至顶执行堆化。如下图所示,我们比较插入节点与其父节点的值,如果插入节点更大,则将它们交换。然后继续执行此操作,从底至顶修复堆中的各个节点,直至越过根节点或遇到无须交换的节点时结束

设节点总数为 n ,则树的高度为 O(log⁡n) 。由此可知,堆化操作的循环轮数最多为 O(log⁡n) ,元素入堆操作的时间复杂度为 O(log⁡n) 。代码如下所示:

def push(self, val: int):
    """元素入堆"""
    # 添加节点
    self.max_heap.append(val)
    # 从底至顶堆化
    self.sift_up(self.size() - 1)

def sift_up(self, i: int):
    """从节点 i 开始,从底至顶堆化"""
    while True:
        # 获取节点 i 的父节点
        p = self.parent(i)
        # 当“越过根节点”或“节点无须修复”时,结束堆化
        if p < 0 or self.max_heap[i] <= self.max_heap[p]:
            break
        # 交换两节点
        self.swap(i, p)
        # 循环向上堆化
        i = p

4.   堆顶元素出堆

堆顶元素是二叉树的根节点,即列表首元素。如果我们直接从列表中删除首元素,那么二叉树中所有节点的索引都会发生变化,这将使得后续使用堆化进行修复变得困难。为了尽量减少元素索引的变动,我们采用以下操作步骤。

  1. 交换堆顶元素与堆底元素(交换根节点与最右叶节点)。
  2. 交换完成后,将堆底从列表中删除(注意,由于已经交换,因此实际上删除的是原来的堆顶元素)。
  3. 从根节点开始,从顶至底执行堆化

如下图所示,“从顶至底堆化”的操作方向与“从底至顶堆化”相反,我们将根节点的值与其两个子节点的值进行比较,将最大的子节点与根节点交换。然后循环执行此操作,直到越过叶节点或遇到无须交换的节点时结束

与元素入堆操作相似,堆顶元素出堆操作的时间复杂度也为 O(log⁡n) 。代码如下所示:

def pop(self) -> int:
    """元素出堆"""
    # 判空处理
    if self.is_empty():
        raise IndexError("堆为空")
    # 交换根节点与最右叶节点(交换首元素与尾元素)
    self.swap(0, self.size() - 1)
    # 删除节点
    val = self.max_heap.pop()
    # 从顶至底堆化
    self.sift_down(0)
    # 返回堆顶元素
    return val

def sift_down(self, i: int):
    """从节点 i 开始,从顶至底堆化"""
    while True:
        # 判断节点 i, l, r 中值最大的节点,记为 ma
        l, r, ma = self.left(i), self.right(i), i
        if l < self.size() and self.max_heap[l] > self.max_heap[ma]:
            ma = l
        if r < self.size() and self.max_heap[r] > self.max_heap[ma]:
            ma = r
        # 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
        if ma == i:
            break
        # 交换两节点
        self.swap(i, ma)
        # 循环向下堆化
        i = ma

8.1.3   堆的常见应用

  • 优先队列堆通常作为实现优先队列的首选数据结构,其入队和出队操作的时间复杂度均为 O(log⁡n) ,而建堆操作为 O(n) ,这些操作都非常高效。
  • 堆排序:给定一组数据,我们可以用它们建立一个堆,然后不断地执行元素出堆操作,从而得到有序数据。然而,我们通常会使用一种更优雅的方式实现堆排序,详见“堆排序”章节。
  • 获取最大的 k 个元素:这是一个经典的算法问题,同时也是一种典型应用,例如选择热度前 10 的新闻作为微博热搜,选取销量前 10 的商品等。

8.2   建堆操作

在某些情况下,我们希望使用一个列表的所有元素来构建一个堆,这个过程被称为“建堆操作”。

8.2.1   借助入堆操作实现

首先创建一个空堆,然后遍历列表,依次对每个元素执行“入堆操作”,即先将元素添加至堆的尾部,再对该元素执行“从底至顶”堆化

每当一个元素入堆,堆的长度就加一。由于节点是从顶到底依次被添加进二叉树的,因此堆是“自上而下”构建的。

设元素数量为 n ,每个元素的入堆操作使用 O(log⁡n) 时间,因此该建堆方法的时间复杂度为 O(nlog⁡n) 。

8.2.2   通过遍历堆化实现

实际上,可以实现一种更为高效的建堆方法,共分为两步。

  1. 将列表所有元素原封不动地添加到堆中,此时堆的性质尚未得到满足。
  2. 倒序遍历堆(层序遍历的倒序),依次对每个非叶节点执行“从顶至底堆化”。

每当堆化一个节点后,以该节点为根节点的子树就形成一个合法的子堆。而由于是倒序遍历,因此堆是“自下而上”构建的。

之所以选择倒序遍历,是因为这样能够保证当前节点之下的子树已经是合法的子堆,这样堆化当前节点才是有效的。

值得说明的是,由于叶节点没有子节点,因此它们天然就是合法的子堆,无须堆化。如以下代码所示,最后一个非叶节点是最后一个节点的父节点,我们从它开始倒序遍历并执行堆化:

def __init__(self, nums: list[int]):
    """构造方法,根据输入列表建堆"""
    # 将列表元素原封不动添加进堆
    self.max_heap = nums
    # 堆化除叶节点以外的其他所有节点
    for i in range(self.parent(self.size() - 1), -1, -1):
        self.sift_down(i)

8.2.3   复杂度分析

下面,我们来尝试推算第二种建堆方法的时间复杂度。

  • 假设完全二叉树的节点数量为 n ,则叶节点数量为 (n+1)/2 ,其中 / 为向下整除。因此需要堆化的节点数量为 (n−1)/2 。
  • 在从顶至底堆化的过程中,每个节点最多堆化到叶节点,因此最大迭代次数为二叉树高度 log⁡n 。

将上述两者相乘,可得到建堆过程的时间复杂度为 O(nlog⁡n) 。但这个估算结果并不准确,因为没有考虑到二叉树底层节点数量远多于顶层节点的性质

接下来我们来进行更为准确的计算。为了降低计算难度,假设给定一个节点数量为 n 、高度为 h 的“完美二叉树”,该假设不会影响计算结果的正确性。

如上图所示,节点“从顶至底堆化”的最大迭代次数等于该节点到叶节点的距离,而该距离正是“节点高度”。因此,我们可以对各层的“节点数量 × 节点高度”求和,得到所有节点的堆化迭代次数的总和

使用错位相减法可得

T(h) 是一个等比数列,可直接使用求和公式,得到时间复杂度为:

进一步,高度为 h 的完美二叉树的节点数量为 n=2^{h+1}-1 ,易得复杂度为 O(2^h)=O(n) 。以上推算表明,输入列表并建堆的时间复杂度为 O(n) ,非常高效

8.3   Top-k 问题

给定一个长度为 n 的无序数组 nums ,请返回数组中最大的 k 个元素。

8.3.1   方法一:遍历选择

进行下图所示的 k 轮遍历,分别在每轮中提取第 1、2、…、k 大的元素,时间复杂度为 O(nk) 。

此方法只适用于 k≪n 的情况,因为当 k 与 n 比较接近时,其时间复杂度趋向于 O(n^2) ,非常耗时

8.3.2   方法二:排序

先对数组 nums 进行排序,再返回最右边的 k 个元素,时间复杂度为 O(nlog⁡n) 。

但是该方法“超额”完成,因为我们只需找出最大的 k 个元素即可,而不需要排序其他元素

8.3.3   方法三:堆

可以基于堆更加高效地解决 Top-k 问题,流程如下图所示。

  1. 初始化一个小顶堆,其堆顶元素最小。
  2. 先将数组的前 k 个元素依次入堆。
  3. 从第 k+1 个元素开始,若当前元素大于堆顶元素,则将堆顶元素出堆,并将当前元素入堆。
  4. 遍历完成后,堆中保存的就是最大的 k 个元素。

def top_k_heap(nums: list[int], k: int) -> list[int]:
    """基于堆查找数组中最大的 k 个元素"""
    # 初始化小顶堆
    heap = []
    # 将数组的前 k 个元素入堆
    for i in range(k):
        heapq.heappush(heap, nums[i])
    # 从第 k+1 个元素开始,保持堆的长度为 k
    for i in range(k, len(nums)):
        # 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
        if nums[i] > heap[0]:
            heapq.heappop(heap)
            heapq.heappush(heap, nums[i])
    return heap

总共执行了 n 轮入堆和出堆,堆的最大长度为 k ,因此时间复杂度为 O(nlog⁡k) 。该方法的效率很高,当 k 较小时,时间复杂度趋向 O(n) ;当 k 较大时,时间复杂度不会超过 O(nlog⁡n) 。

另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大的 k 个元素的动态更新。

8.4   小结

1.   重点回顾

  • 堆是一棵完全二叉树,根据成立条件可分为大顶堆和小顶堆。大(小)顶堆的堆顶元素是最大(小)的。
  • 优先队列的定义是具有出队优先级的队列,通常使用堆来实现。
  • 堆的常用操作及其对应的时间复杂度包括:元素入堆 O(log⁡n)、堆顶元素出堆 O(log⁡n) 和访问堆顶元素 O(1) 等。
  • 完全二叉树非常适合用数组表示,因此我们通常使用数组来存储堆。
  • 堆化操作用于维护堆的性质,在入堆和出堆操作中都会用到。
  • 输入 n 个元素并建堆的时间复杂度可以优化至 O(n) ,非常高效。
  • Top-k 是一个经典算法问题,可以使用堆数据结构高效解决,时间复杂度为 O(nlog⁡k) 。

2.   Q & A

Q数据结构的“堆”与内存管理的“堆”是同一个概念吗?

两者不是同一个概念,只是碰巧都叫“堆”。计算机系统内存中的堆是动态内存分配的一部分,程序在运行时可以使用它来存储数据。程序可以请求一定量的堆内存,用于存储如对象和数组等复杂结构。当这些数据不再需要时,程序需要释放这些内存,以防止内存泄漏。相较于栈内存,堆内存的管理和使用需要更谨慎,使用不当可能会导致内存泄漏和野指针等问题。

Reference

第 8 章   堆 - Hello 算法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DayDayUp..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值