1、导入iris数据集
from sklearn.datasets import load_iris
iris_dataset = load_iris()
print("key of iris_dataset: \n{}".format(iris_dataset.keys()))
'''
key of iris_dataset:
dict_keys(['feature_names', 'target', 'data', 'target_names', 'DESCR', 'filename'])
'''
print(iris_dataset['target_names'])
'''
array(['setosa', 'versicolor', 'virginica'],
dtype='<U10')
'''
2、划分数据集
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(
iris_dataset['data'],iris_dataset['target'],random_state=0)
print(X_train.shape,X_test.shape)
# (112, 4) (38, 4)
print(y_train.shape,y_test.shape)
#(112,) (38,)
3、观察数据集