【bzoj 3296】 Learning Languages 【USACO2011 Open】

Description

农夫约翰的N(2 <= N<=10,000)头奶牛,编号为1.. N,一共会流利地使用M(1<= M <=30,000)种语言,编号从1

 .. M.,第i头,会说K_i(1 <= K_i<= M)种语言,即L_i1, L_i2,..., L_{iK_i} (1 <= L_ij <= M)。 FJ的奶牛

不太聪明,所以K_i的总和至多为100,000。两头牛,不能直接交流,除非它们都会讲某一门语言。然而,没有共同

语言的奶牛们,可以让其它的牛给他们当翻译。换言之,牛A和B可以谈话,当且仅当存在一个序列奶牛T_1,T_2,

...,T_k,A和T_1都会说某一种语言,T_1和T_2也都会说某一种语言……,并且T_k和B会说某一种语言。农夫约翰

希望他的奶牛更加团结,所以他希望任意两头牛之间可以交流。他可以买书教他的奶牛任何语言。作为一个相当节

俭的农民,FJ想要购买最少的书籍,让所有他的奶牛互相可以说话。帮助他确定:*他必须购买的书籍的最低数量

Input

*第1行:两个用空格隔开的整数:N和M

*第2..N+1行:第i+1行描述的牛i的语言,K_i+1个空格隔开的整数:

K_iL_i1 L_i2,...,L_I{K_i}。

 

Output

*第1行:一个整数,FJ最少需要购买的书籍数量

Sample Input

3 3
2 3 2
1 2
1 1

Sample Output

1
//给三号牛买第二本书即可

这道题是并查集,将每头牛与它会的每种语言都连边,最后统计连通块数量即可,下面是程序:

#include<stdio.h>
#include<iostream>
using namespace std;
const int N=10005,M=30005;
int f[N+M];
bool vis[N+M];
int findf(int u){
	return f[u]=u==f[u]?u:findf(f[u]);
}
void Union(int x,int y){
	x=findf(x),y=findf(y);
	if(x!=y){
		f[x]=y;
	}
}
int main(){
	int n,m,i,j,k,x;
	scanf("%d%d",&n,&m);
	for(i=1;i<=n+m;i++){
		f[i]=i;
	}
	for(i=1;i<=n;i++){
		scanf("%d",&k);
		for(j=1;j<=k;j++){
			scanf("%d",&x);
			Union(i,x+n);
		}
	}
	for(i=1,x=-1;i<=n;i++){
		k=findf(i);
		if(!vis[k]){
			vis[k]=1;
			++x;
		}
	}
	printf("%d\n",x);
	return 0;
}

 

题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值