Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
这道题是一个DP,求最大子矩阵和(尽管读入一点也不像一个矩阵),可以使用和数组将二维的矩阵压缩到一维,然后就是简单的最大子段和了,下面是程序:
#include<stdio.h>
#include<iostream>
using namespace std;
const int INF=0x7fffffff;
int map[105][105],sum[105][105];
int read(){
char c=getchar();
int s=0,f=1;
while((c<'0'||c>'9')&&c!='-'){
c=getchar();
}
if(c=='-'){
f=-1;
c=getchar();
}
while(c>='0'&&c<='9'){
s*=10;
s+=c-'0';
c=getchar();
}
return s*f;
}
int main(){
int n=read(),i,j,k,ans=-INF;
for(i=1;i<=n;i++){
for(j=1;j<=n;j++){
map[i][j]=read();
sum[i][j]=sum[i-1][j]+map[i][j];
}
}
for(i=1;i<=n;i++){
for(j=i;j<=n;j++){
int s=-INF,tp=0;
for(k=1;k<=n;k++){
int x=sum[j][k]-sum[i-1][k];
tp+=x;
if(tp<0){
tp=0;
}
s=max(tp,s);
}
ans=max(ans,s);
}
}
printf("%d\n",ans);
return 0;
}