💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
(1)完整代码,已上传资源;需要的,在博主主页搜期号直接付费下载或者订阅本专栏赠送此代码,代码获取,私信博主。
(2)代码包运行,运行有问题的话,可咨询博主。
(3)可提供运行操作视频!适合小白!
⛳️座右铭:行百里者,半于九十。
更多Matlab智能算法神经网络预测与分类仿真内容点击👇
①Matlab神经网络预测与分类 (进阶版)
②付费专栏Matlab智能算法神经网络预测与分类(中级版)
③付费专栏Matlab智能算法神经网络预测与分类(初级版)
⛳️关注优快云海神之光,更多资源等你来!!
⛄一、WOA-GRU数据预测
1 GRU算法
将经过卷积之后产生的特征序列作为GRU的输入。GRU由LSTM发展而来,LSTM是RNN的变体。RNN网络通过对输入信号的循环保证了信号的持续存在。LSTM是由RNN网络改进而来,在RNN的基础上加入了记忆单元和门机制,有效地解决了长序列训练中存在的梯度消失和梯度爆炸问题。
LSTM用输入门、遗忘门和输出门3个门函数来控制输入值、遗忘值和输出值。GRU网络较LSTM网络有所简化,GRU网络由新门和重置门两个门函数构成,其结构如图1所示。
图1 GRU的网络结构图
zt为更新门,用来决定上一层隐藏层状态中有多少信息传递到当前的隐藏状态ht中,经过sigmoid函数将结果映射到0~1之间,即:
rt为重置门,决定上一时刻隐藏层状态有多少信息需要被遗忘,经过sigmoid函数将结果映射到0~1之间,越接近1信息越容易被保留,即:
确定当前的记忆内容,将重置门rt与ht–1进行Hadamard乘积决定当前的记忆内容中要遗忘多少上一时刻的隐藏层的内容,然后与新的输入数据结合放入tanh激活函数中,即:
最后确定当前隐藏层保留的信息,通过zt和1–zt确定哪些历史数据和当前数据需要更新,即:
2 鲸鱼群算法优化门控循环神经网络(GRU-WOA)
首先初始化训练数据。设置鲸鱼群种群数量为 100,目标函数初始化设为 1e10,设定最大迭代次数为 100。鲸鱼群算法优化循环神经网络的连接权值,鲸群中个体的位置向量与网络迭代过程中的权值及阈值对应。样本训练产生的均方差为鲸鱼的适应度函数。利用鲸群 3 个公式
更新位置,并将其代替梯度下降法训练循环神经网络。不断迭代训练,直到期望误差或迭代次数达标。鲸鱼群算法优化循环神经网络步骤如下:
(1)初始化网络模型。包括隐藏层个数、最大迭代次数等。
(2)设置循环神经网络权重个数和鲸鱼个数,二者相等。
(3)计算鲸鱼适应度值,进行排序,找出全局最优。本文将均方差误差作为适应度函数。
其中,yˉi 表示预测值,yi 表示真实值,n 表示样本个数。
(4)按照式(13)更新鲸鱼个体位置,迭代数加一。
(5)判断算法是否满足终止要求,若没有则进行第(3)步,否则进行第(6)步。
(6)对鲸鱼位置向量赋予网络权值。
(7)采用梯度下降算法进行模型训练,当迭代次数到达规定次数,若损失函数收敛,则训练完成;若未收敛,则继续迭代直至收敛。
(8)输入训练样本数据,输出预测值。
⛄二、部分源代码
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]李祚敏,秦江涛.基于WOA-GRU的销售预测研究[J].软件导刊. 2020,19(09)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合