【语音去噪】基于matlab谱减法+维纳滤波+卡尔曼滤波语音去噪【含Matlab源码 1881期】

本文介绍了三种语音去噪技术:谱减法、维纳滤波和卡尔曼滤波。谱减法基于噪声稳定性的假设,利用相位不变性进行信号增强;维纳滤波通过最小化均方误差来恢复原始信号;卡尔曼滤波则适用于非平稳噪声环境,结合语音生成模型提高语音质量。通过Matlab仿真,对比了这三种方法在语音增强效果上的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
在这里插入图片描述
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式

⛳️座右铭:行百里者,半于九十。
更多Matlab语音处理仿真内容点击👇
Matlab语音处理 (进阶版)
付费专栏Matlab语音处理(初级版)

⛳️关注微信公众号Matlab王者助手或Matlab海神之光,更多资源等你来!!

⛄一、谱减法+维纳滤波+卡尔曼滤波语音去噪简介

1 维纳滤波算法
在传统的去噪算法中,维纳滤波因其操作简单、去噪效果好,被公认为一种经典的去噪算法。语音信号在时域的表示为: yi( t) = si( t) + ni( t) ,其中si( t) 、ni( t) 和yi( t) 分别是第i帧原始语音信号、噪声和被噪声污染的语音信号。维纳滤波原理是寻求一个线性滤波器H( n) ,使含噪语音yi( t) 经过线性滤波器后的估计值 ^si( t) = yi( t) * Hi( n) 与si( t) 之间的均方误差最小,进而从噪声ni( t) 干扰的含噪语音中分离出原纯净语音的理论。在si( t) 和ni( t) 都是平稳信号而且不相关的情况下,维纳滤波器在频域的最优估计函数为:
在这里插入图片描述
其中ps( w) 和pn( w) 分别是原始信号的功率谱和噪声的功率谱,则第i帧信号滤波后有用信号的谱估计为:
在这里插入图片描述

2 基本谱减法
S.Boll假设噪声信号是平稳的或变化缓慢的加性噪声,且在语音信号和噪声信号不相关的前提下提出谱减法,假定噪声是平稳的,人耳对相位信息不敏感,将含噪语音的相位作为处理后语音的相位,根据处理后的幅度和相位进行IFFT变换,得到增强后的时域信号。

设含噪语音为y (n),纯净语音为s (n),平稳加性高斯白噪声为d (n),有:
在这里插入图片描述
由傅里叶变换和纯净语音与含噪语音不相关,有:
在这里插入图片描述
选取适当帧长语音信号为短时平稳过程后:
在这里插入图片描述
式中λn (k)为|D(k)|2的统计平均,这样就得到基本谱减法求出原始语音信号的估计值|S(k)|。

3 基于卡尔曼滤波的语音增强
现实中的噪声大都是非平稳的,因而研究非平稳噪声状态下的语音增强具有重要意义。

卡尔曼滤波在语音去噪已有许多研究应用,其结合语音生成模型,用信号的线性预测系数作为状态转移矩阵,增强后语音中残留的音乐噪声减少,语音自然度提高,其模型参数估计的准确与否直接影响增强语音的质量。卡尔曼滤波算法在语音信号去噪方面的应用研究较多,主要归功于其处理数据和计算算法实现等较为方便。

卡尔曼滤波器的主要过程有两个,分别是预估和校正。预估就是根据时间更新方程建立对当前状态的先验估计,方便构造下一状态的先验估计值;校正即是反馈过程,根据更新方程预估的先验估计值和当前测量值对现状态分析,改进后验估计值。

对含噪语音信号的计算式为:
在这里插入图片描述
式中:s (k)为纯净语音;n (k)为与s (k)不相关的背景噪声。纯净语音s (k)在短时间段内认为是平稳的,其p阶AR预测方程为:
在这里插入图片描述
进一步得到系统的状态空间方程为:
在这里插入图片描述
式中:S (k)是k时刻的系统状态,即语音实际值;F是LPC系数构成的状态转移矩阵;y (k)是k时刻的测量值;n (k)和u (k)分别为测量噪声和过程噪声,均值始终为零,且其方差分别为δn2和δu2的不相关白噪声;H和G分别为观测向量和输入向量。
在这里插入图片描述
分帧后的语音信号在假设初始条件值后,通过卡尔曼滤波递推求出相应的结果:
在这里插入图片描述
迭代计算后最终得出增强后的语音信号在k时刻的最佳估值:
在这里插入图片描述

⛄二、部分源代码

%%三种语音增强方法的测试脚本
%******************************************************
% 在audioread函数中可以设置读入的语音信号
% 改变SNR的值即可改变加入的噪声
%
[Input, Fs] = audioread(‘sp01.wav’);
Time = (0:1/Fs:(length(Input)-1)/Fs)';
%取单声道
Input = Input(:,1);
%SNR为加入噪声与纯净信号的信噪比(dB)
SNR=10;
[NoisyInput,Noise] = add_noise(Input,SNR);%NoisyInput为加噪信号,Noise是噪声

%% 三种语音增强方法的实现
[spectruesub_enspeech] = spectruesub(NoisyInput);
[wiener_enspeech] = wienerfilter(NoisyInput);
[Klaman_Output] = kalman(NoisyInput,Fs,Noise);

%% spectruesub绘制
%将信号长度对齐
sig_len=length(spectruesub_enspeech);
NoisyInput=NoisyInput(1:sig_len);
Input=Input(1:sig_len);
wiener_enspeech=wiener_enspeech(1:sig_len);
Klaman_Output=Klaman_Output(1:sig_len);
Time = (0:1/Fs:(sig_len-1)/Fs)‘;
% Time= ((0:1/Fs:(sig_len)-1)/Fs)’;
figure(1)
MAX_Am(1)=max(Input);
MAX_Am(2)=max(NoisyInput);
MAX_Am(3)=max(spectruesub_enspeech);
subplot(3,1,1);
plot(Time, Input)
ylim([-max(MAX_Am),max(MAX_Am)]);
xlabel(‘Time’)
ylabel(‘Amlitude’)
title(‘原始信号’)

subplot(3,1,2);
plot(Time, NoisyInput)
ylim([-max(MAX_Am),max(MAX_Am)]);
xlabel(‘Time’)
ylabel(‘Amlitude’)
title(‘加噪信号’)

subplot(3,1,3);
plot(Time, spectruesub_enspeech)
ylim([-max(MAX_Am),max(MAX_Am)]);
xlabel(‘Time’)
ylabel(‘Amlitude’)
title(‘谱减法’)

%% spectruesub绘制
% Time_wiener = (0:1/Fs:(length(wiener_enspeech)-1)/Fs)';
figure(2)
MAX_Am(1)=max(Input);
MAX_Am(2)=max(NoisyInput);
MAX_Am(3)=max(wiener_enspeech);
subplot(3,1,1);
plot(Time, Input)
ylim([-max(MAX_Am),max(MAX_Am)]);
xlabel(‘Time’)
ylabel(‘Amlitude’)
title(‘原始信号’)

subplot(3,1,2);
plot(Time, NoisyInput)
ylim([-max(MAX_Am),max(MAX_Am)]);
xlabel(‘Time’)
ylabel(‘Amlitude’)
title(‘加噪信号’)

subplot(3,1,3);
plot(Time, wiener_enspeech)
ylim([-max(MAX_Am),max(MAX_Am)]);
xlabel(‘Time’)
ylabel(‘Amlitude’)
title(‘维纳滤波法’)

%% Kalman绘制
figure(3)
MAX_Am(1)=max(Input);
MAX_Am(2)=max(NoisyInput);
MAX_Am(3)=max(Klaman_Output);
subplot(3,1,1);
plot(Time, Input)
ylim([-max(MAX_Am),max(MAX_Am)]);
xlabel(‘Time’)
ylabel(‘Amlitude’)
title(‘原始信号’)

subplot(3,1,2);
plot(Time, NoisyInput)
ylim([-max(MAX_Am),max(MAX_Am)]);
xlabel(‘Time’)
ylabel(‘Amlitude’)
title(‘加噪信号’)

subplot(3,1,3);
plot(Time, Klaman_Output)
ylim([-max(MAX_Am),max(MAX_Am)]);
xlabel(‘Time’)
ylabel(‘Amlitude’)
title(‘Kalman滤波’)

%% 求语音降噪后的信噪比
SNR(1)=snr(Input,Input-spectruesub_enspeech);
SNR(2)=snr(Input,Input-wiener_enspeech);
SNR(3)=snr(Input,Input-Klaman_Output);

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.
[2]郑展恒,曾庆宁.语音增强算法的研究与改进[J].现代电子技术. 2020,43(21)
[3]靳立燕,陈莉,樊泰亭,高晶.基于奇异谱分析和维纳滤波的语音去噪算法[J].计算机应用. 2015,35(08)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海神之光

有机会获得赠送范围1份代码

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值