💥💥💥💥💥💥💞💞💞💞💞💞💞💞欢迎来到海神之光博客之家💞💞💞💞💞💞💞💞💥💥💥💥💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进;
🍎个人主页:海神之光
🏆代码获取方式:
海神之光Matlab王者学习之路—代码获取方式
⛳️座右铭:行百里者,半于九十。
更多Matlab图像处理仿真内容点击👇
①Matlab图像处理(进阶版)
②付费专栏Matlab图像处理(初级版)
⛳️关注优快云海神之光,更多资源等你来!!
⛄一、矩匹配算法简介
图像的矩是归一化的灰度级图像的二维随机变量的概率密度,是一个统计学特征。OpenCV中实现了这个矩的算子是Moments();其中分为零阶矩M00、一阶矩M10和M01、二阶矩M20,M02和M11;其中当图像为二值图时,M00是图像面积(白色区域)的总和,或者说连通域的面积;而这时M10和M01是图像白色区域上x和y坐标值的累计,所以图像的的重心(Xc,Yc)可以由:
Xc=M10/M00;
Yc=M01/M00;
图像的二阶矩一般用来求图像的方向,方法是:
⛄二、部分源代码
function varargout = FeatureExtraction_New(varargin)
% FEATUREEXTRACTION_NEW M-file for FeatureExtraction_New.fig
% FEATUREEXTRACTION_NEW, by itself, creates a new FEATUREEXTRACTION_NEW or raises the existing
% singleton*.
%
% H = FEATUREEXTRACTION_NEW returns the handle to a new FEATUREEXTRACTION_NEW or the handle to
% the existing singleton*.
%
% FEATUREEXTRACTION_NEW(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in FEATUREEXTRACTION_NEW.M with the given input arguments.
%
% FEATUREEXTRACTION_NEW(‘Property’,‘Value’,…) creates a new FEATUREEXTRACTION_NEW or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before FeatureExtraction_New_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to FeatureExtraction_New_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help FeatureExtraction_New
% Last Modified by GUIDE v2.5 20-Jul-2010 09:42:25
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @FeatureExtraction_New_OpeningFcn, …
‘gui_OutputFcn’, @FeatureExtraction_New_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% — Executes just before FeatureExtraction_New is made visible.
function FeatureExtraction_New_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to FeatureExtraction_New (see VARARGIN)
global Pic_num;
Pic_num=0;
% Choose default command line output for FeatureExtraction_New
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes FeatureExtraction_New wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% — Outputs from this function are returned to the command line.
function varargout = FeatureExtraction_New_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% — Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global Pic;
global Pic_gray;
global fname;
global Pic_num;
[fname, pname, index] = uigetfile({‘bmp;.jpg’;‘*.gif’},‘读取图片’);
if index==1
Pic_num=Pic_num+1;
str = [pname fname];
Pic=imread(str);
set(handles.text1,‘string’,fname);
axes(handles.axes1);
imshow(Pic);
end
axes(handles.axes2);
Pic_gray=rgb2gray(Pic);
imshow(Pic_gray);
[u,n2,e,K,energy,ENTROPY]=Pic_gray_count(Pic_gray); % 计算灰度图像的种种特征并显示
set(handles.u,‘string’,num2str(u)); %均值
set(handles.n2,‘string’,num2str(n2)); %方差
set(handles.e,‘string’,num2str(e)); %偏度
set(handles.K,‘string’,num2str(K)); %峰度
set(handles.energy,‘string’,num2str(energy));%能量
set(handles.ENTROPY,‘string’,num2str(ENTROPY));%熵
score=25.0ENTROPY/20+25.01000/n2+25.04/K+25.08/abs(u-128); % 计算评分值,给出结果
score_result=‘优’;
if score<60
score_result=‘差’;
elseif score<70
score_result=‘中’;
elseif score<80
score_result=‘良’;
else
score_result=‘优’;
end
set(handles.good_or_bad,‘string’,score_result);
% — Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% [R_G,R_G_gray,R_G_binary,R_G_binary_real,Pic_pattern,average]=Pic_Red_Outstand(Pic,sliderValue,Pic_R_rate)
% % 将图片 Pic 中的红色分量突出来,适用于对小的,完整的,占据整个图片的路标的处理,对大图片中的小路标的处理效果不好
% 如果阈值 sliderValue 为负数,则为利用计算出的默认average 作为阈值,调整突出的红色部分的多少
% 如果阈值 sliderValue 非负数,则根据 sliderValue 作为阈值,调整突出的红色部分的多少
% R_G 为 R_G=0.5*(2*Pic_double(:,:,1)-Pic_double(:,:,2)-Pic_double(:,:,3));
% R_G_gray 为 R_G 所构成的灰度图像
% R_G_binary 是与阈值 average 或 sliderValue 相关的R_G_gray 的二值化图像,
% 当红色分量太大,R_G_binary 比 R_G_binary_real 效果更好
% R_G_binary_real 是 R_G_binary 经过修正的 R_G_gray 的二值化图像
% average 为计算出的阈值
% Pic_pattern 描述图片 Pic 的分类情况
% Pic_R_rate 至关重要的变量!
% 当对小图片(路标的四周靠近图片的四周)处理时,路标(红色)的比例为0.37较好,默认为 0.4
% 当对大图片(路标在图片中只占一个较小的区域)时,路标的比例很小,默认为 0(即启用修正)
% 当 R_hao>Pic_R_rate 时,启用修正,否则不启用修正
global Pic;
global Pic_pattern_new;
[R_G,R_G_gray,R_G_binary,R_G_binary_real,Pic_pattern,Pic_pattern_new,average]=Pic_Red_Outstand(Pic,-1,0.4); % 0.4 突出红色分量
set(handles.text5,‘string’,num2str(average));
axes(handles.axes3);
imshow(R_G_gray);
axes(handles.axes4);
imshow(R_G_binary);
axes(handles.axes5);
imshow(R_G_binary_real);
% figure;
% surf(Pic_pattern_new);
Pic_pattern_temp=0;
[a,b]=size(Pic_pattern_new);
for i=1:a % 将分类转变为彩色图片显示出来
for j=1:b
if Pic_pattern_new(i,j)==-1
Pic_pattern_temp(i,j,1:3)=[0,0,0];
end
if Pic_pattern_new(i,j)==1
Pic_pattern_temp(i,j,1:3)=[255,0,0];
end
if Pic_pattern_new(i,j)==2 % 第二类(大于平均阈值的一类)标为绿色
Pic_pattern_temp(i,j,1:3)=[0,255,0];
end
if Pic_pattern_new(i,j)==3 % 第三类(小于平均阈值的一类)标为蓝色
Pic_pattern_temp(i,j,1:3)=[0,0,255];
end
end
end
axes(handles.axes6);
imshow(Pic_pattern_temp);
% — Executes on slider movement.
function slider1_Callback(hObject, eventdata, handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,‘Value’) returns position of slider
% get(hObject,‘Min’) and get(hObject,‘Max’) to determine range of slider
global Pic;
global Pic_pattern_new;
sliderValue = get(handles.slider1,‘Value’);
sliderValue =round(sliderValue);
set(handles.text3,‘String’, num2str(sliderValue));
num2str(sliderValue)
[R_G,R_G_gray,R_G_binary,R_G_binary_real,Pic_pattern,Pic_pattern_new,average]=Pic_Red_Outstand(Pic,sliderValue,0.4); % 突出红色分量
set(handles.text5,‘string’,num2str(average));
axes(handles.axes3);
imshow(R_G_gray);
axes(handles.axes4);
imshow(R_G_binary);
axes(handles.axes5);
imshow(R_G_binary_real);
Pic_pattern_temp=0;
[a,b]=size(Pic_pattern_new);
for i=1:a % 将分类转变为彩色图片显示出来
for j=1:b
if Pic_pattern_new(i,j)==-1
Pic_pattern_temp(i,j,1:3)=[0,0,0];
end
if Pic_pattern_new(i,j)==1
Pic_pattern_temp(i,j,1:3)=[255,0,0];
end
if Pic_pattern_new(i,j)==2
Pic_pattern_temp(i,j,1:3)=[0,255,0];
end
if Pic_pattern_new(i,j)==3
Pic_pattern_temp(i,j,1:3)=[0,0,255];
end
end
end
axes(handles.axes6);
imshow(Pic_pattern_temp);
% — Executes during object creation, after setting all properties.
function slider1_CreateFcn(hObject, eventdata, handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,‘BackgroundColor’), get(0,‘defaultUicontrolBackgroundColor’))
set(hObject,‘BackgroundColor’,[.9 .9 .9]);
end
% — Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global Pic;
global Pic_pattern_new;
slider_value=str2num(get(handles.text3,‘string’));
average=str2num(get(handles.text5,‘string’));
if slider_value>0
[R_G,R_G_gray,R_G_binary,R_G_binary_real,Pic_pattern,Pic_pattern_new,average]=Pic_Red_Outstand(Pic,slider_value,1);
else
[R_G,R_G_gray,R_G_binary,R_G_binary_real,Pic_pattern,Pic_pattern_new,average]=Pic_Red_Outstand(Pic,average,1);
end
figure;
surf(Pic_pattern_new);
% — Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global Pic_pattern_new;
global fname;
global Pic_num;
[fname_a,fname_b]=size(fname);
fname_new=fname(1,1:fname_b-4);
load(‘fname_array.mat’); % 生成并保存图像名称构成的数组
if Pic_num==1 %清空数据库中的数据
fname_array=’ ';
end
fname_array(Pic_num,1:fname_b-4)=fname_new;
save ‘fname_array.mat’ fname_array;
load(‘signpost_data.mat’); % 生成并保存矩的相关结果构成的数组
if Pic_num==1 %清空数据库中的数据
signpost_data=0;
end
Pic_binary_1=0; % 由 Pic_pattern_new 生成不同三类的二值化图像,以便计算矩
Pic_binary_2=0;
Pic_binary_3=0;
[a,b]=size(Pic_pattern_new);
for i=1:a
for j=1:b
if Pic_pattern_new(i,j)==1
Pic_binary_1(i,j)=0;
else
Pic_binary_1(i,j)=1;
end
if Pic_pattern_new(i,j)==2
Pic_binary_2(i,j)=0;
else
Pic_binary_2(i,j)=1;
end
if Pic_pattern_new(i,j)==3
Pic_binary_3(i,j)=0;
else
Pic_binary_3(i,j)=1;
end
end
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]宋锦博.除草机器人路标识别多模式匹配算法研究——面向中英文混合环境[J].农机化研究. 2019,41(07)
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合