填算式

本文探讨了一道有趣的数学谜题:使用1到9的数字各一次,填入加法算式中使得等式成立。文章提供了几个示例并附带了一个Java程序,用于找出所有可能的解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看这个算式:
☆☆☆ + ☆☆☆ = ☆☆☆
如果每个五角星代表 1 ~ 9 的不同的数字。
这个算式有多少种可能的正确填写方法?
173 + 286 = 459
295 + 173 = 468
173 + 295 = 468
183 + 492 = 675
以上都是正确的填写法!
注意:
111 + 222 = 333 是错误的填写法!
因为每个数字必须是不同的! 
也就是说:1~9中的所有数字,每个必须出现且仅出现一次!
注意:
不包括数字“0”!
注意:
满足加法交换率的式子算两种不同的答案。
所以答案肯定是个偶数

public class FillInTheFormula {
	static int N = 0; // 记录次数
	static int[] a = { 1, 2, 3, 4, 5, 6, 7, 8, 9 };
	static void count() {
		int x = a[0] * 100 + a[1] * 10 + a[2];
		int y = a[3] * 100 + a[4] * 10 + a[5];
		int z = a[6] * 100 + a[7] * 10 + a[8];

		if (x + y == z) {
			N++;
			System.out.println("第" + N + "个解:" + a[0] + a[1] + a[2] + "+"
					+ a[3] + a[4] + a[5] + "=" + a[6] + a[7] + a[8]);
		}
	}
	// 枚举a的所有排列,当前枚举下标:k
	static void f(int k) {
		// 列举第k位的所有情况,交换法
		for (int i = k; i < a.length; i++) {
			{
				int t = a[k];
				a[k] = a[i];
				a[i] = t;
			} // 交换
			if (k == a.length - 1) {
				count();
			} else
				f(k + 1);
			{
				int t = a[k];
				a[k] = a[i];
				a[i] = t;
			} // 交换,回退 回溯
		}
	}
	public static void main(String[] args) {
		f(0);
		System.out.println(N);
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值