ubunt20.04安装cuda加速的opencv

部署运行你感兴趣的模型镜像

环境

RTX3060 Laptop

  • 显卡驱动:NVIDIA-SMI 470.256.02 | Driver Version: 470.256.02 | CUDA Version: 11.4
  • CUDA:11.4
  • CUDNN:8.4.1
  • opencv:4.5.3

安装步骤

  1. 显卡驱动:
sudo apt update
sudo apt upgrade

添加NVIDIA PPA并安装驱动:

sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update
sudo apt install nvidia-driver-470

reboot重启
2. CUDA:
安装时注意取消勾选第一项driver,因为我们已经安装过显卡驱动。
前往官网下载runfile,下载完成后执行sudo sh cuda_11.4.3_470.82.01_linux.run
添加环境变量

echo 'export PATH=/usr/local/cuda-11.4/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-11.4/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc

nvcc -V检查一下
3.CUDNN:
官网下载tar包cudnn-linux-x86_64-8.4.1.50_cuda11.6-archive.tar
解压后把对应文件进行拷贝

sudo cp cuda/include/cudnn*.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
  1. OPENCV:
  • 下载依赖
sudo apt install build-essential cmake git pkg-config libgtk-3-dev libavcodec-dev libavformat-dev libswscale-dev libv4l-dev libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev gfortran openexr libatlas-base-dev python3-dev python3-numpy libtbb2 libtbb-dev libdc1394-22-dev

下载opencv和opencv_contrib并把opencv_contrib放到opencv里

  • 预编译 注意路径
cmake \
-D WITH_CUDA=ON \
-D CUDA_ARCH_BIN="8.6" \
-D WITH_CUDNN=ON \
-D OPENCV_DNN_CUDA=ON  \
-D cuDNN_VERSION='8.4' \
-D cuDNN_INCLUDE_DIR='/usr/local/cuda/include' \
-D CUDA_ARCH_PTX="" \
-D OPENCV_EXTRA_MODULES_PATH=/home/strinkin/opencv-4.5.3/opencv_contrib-4.5.3/modules \
-D WITH_GSTREAMER=ON \
-D WITH_LIBV4L=ON  \
-D BUILD_opencv_python3=ON \
-D BUILD_TESTS=OFF \
-D BUILD_PERF_TESTS=OFF \
-D BUILD_EXAMPLES=OFF \
-D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local \
-D ENABLE_FAST_MATH=1 \
-D CUDA_FAST_MATH=1 \
-D WITH_CUBLAS=1 \
-D PYTHON3_EXECUTABLE=$(which python3) \
-D PYTHON3_INCLUDE_DIR=$(python3 -c "from distutils.sysconfig import get_python_inc; print(get_python_inc())") \
-D PYTHON3_PACKAGES_PATH=$(python3 -c "from distutils.sysconfig import get_python_lib; print(get_python_lib())") \
-D OPENCV_ENABLE_NONFREE=ON \
-D PYTHON3_NUMPY_INCLUDE_DIRS=/usr/lib/python3/dist-packages/numpy/core/include \
-D PYTHON3_PACKAGES_PATH=/usr/lib/python3/dist-packages \
-D PYTHON_DEFAULT_EXECUTABLE=$(which python3) \
-D OPENCV_PYTHON3_INSTALL_PATH=/usr/lib/python3/dist-packages \
-D BUILD_opencv_python3=ON \
-D BUILD_opencv_python2=OFF \
-D HAVE_opencv_python3=ON \
-D INSTALL_PYTHON_EXAMPLES=ON \
-D INSTALL_C_EXAMPLES=ON \
-D BUILD_opencv_python3=ON \
-D OPENCV_GENERATE_PKGCONFIG=YES \
.. 
  • 编译
    nproc查看核心数量
    make -j(核心数量)例如make -j12

  • 安装
    sudo make isntall

  • 将OpenCV的库添加到路径

sudo gedit /etc/ld.so.conf.d/opencv4.conf 

执行此命令后打开的可能是一个空白的文件,不用管,只需要在文件末尾添加/usr/local/lib
执行sudo ldconfig
编辑sudo gedit /etc/bash.bashrc
在文件最后添加:

PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig 
export PKG_CONFIG_PATH 

执行source /etc/bash.bashrc
apt-get install mlocate
sudo updatedb

最后输入pkg-config --modversion opencv4来查看opencv的版本

  1. TensorRT
  • 官網下載tar包
tar -xvf TensorRT-8.6.1.6.Linux.x86_64-gnu.cuda-12.0.tar.gz   #解压
sudo mv TensorRT-8.6.1.6/ /usr/local/
  • 添加環境變量
echo "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/TensorRT-8.6.1.6/lib" >> ~/.bashrc
  • 測試
cd /usr/local/TensorRT-8.6.1.6/samples/sampleOnnxMNIST
make
cd /usr/local/TensorRT-8.6.1.6/bin
./sample_onnx_mnist

您可能感兴趣的与本文相关的镜像

PyTorch 2.9

PyTorch 2.9

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

### 安装支持 CUDAOpenCV 为了在 Ubuntu 20.04 上成功安装带有 CUDA 支持的 OpenCV,需遵循一系列特定步骤来确保兼容性和性能优化。以下是详细的指南: #### 准备工作环境 更新现有包列表并升级已安装软件包至最新版本[^1]。 ```bash sudo apt update && sudo apt upgrade -y ``` #### 安装依赖项 安装构建工具和其他必要的库文件。这一步骤对于后续编译过程至关重要。 ```bash sudo apt install build-essential cmake git pkg-config libgtk-3-dev \ libavcodec-dev libavformat-dev libswscale-dev python3-dev python3-numpy \ libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev \ gfortran openexr libatlas-base-dev protobuf-compiler \ libgoogle-glog-dev libgflags-dev libeigen3-dev \ libopenblas-dev liblapack-dev checkinstall yasm \ libfaac-dev libmp3lame-dev libtheora-dev libvorbis-dev \ libxvidcore-dev x264 v4l-utils ffmpeg qtbase5-dev \ qtchooser qt5-qmake qtbase5-dev-tools libvtk7-dev \ libdc1394-22-dev libharfbuzz-dev libfreetype6-dev \ libfontconfig1-dev libglu1-mesa-dev wget unzip curl \ doxygen graphviz imagemagick libprotobuf-dev \ libsuitesparse-dev libassimp-dev libceres-dev \ libpcl-dev libboost-all-dev libjsoncpp-dev \ libyaml-cpp-dev libgdal-dev libspatialindex-dev \ libgeos++-dev libqhull-dev libflann-dev \ libtinyxml2-dev liburdfdom-dev libconsole-bridge-dev \ ros-noetic-turtlebot3-msgs ros-noetic-sensor-msgs \ ros-noetic-nav-msgs ros-noetic-actionlib msgpack-python \ msgpack-cxx libopencv-contrib-dev libopencv-features2d-dev \ libopencv-flann-dev libopencv-highgui-dev libopencv-imgcodecs-dev \ libopencv-imgproc-dev libopencv-ml-dev libopencv-objdetect-dev \ libopencv-photo-dev libopencv-shape-dev libopencv-stitching-dev \ libopencv-superres-dev libopencv-ts-dev libopencv-video-dev \ libopencv-videostab-dev libopencv-xfeatures2d-dev \ libopencv-ximgproc-dev libopencv-aruco-dev libopencv-bgsegm-dev \ libopencv-bioinspired-dev libopencv_ccalib-dev \ libopencv-cvv-dev libopencv-datasets-dev \ libopencv-dpm-dev libopencv-face-dev libopencv-fuzzy-dev \ libopencv-hfs-dev libopencv-line_descriptor-dev \ libopencv-optflow-dev libopencv-phase_unwrapping-dev \ libopencv-plot-dev libopencv-reg-dev libopencv-rapid-dev \ libopencv-rgbd-dev libopencv-saliency-dev \ libopencv-sfm-dev libopencv-stereo-dev libopencv-structured_light-dev \ libopencv-text-dev libopencv-tracking-dev libopencv-wechat_qrcode-dev \ libopencv_xphoto-dev ``` 注意:上述命令中的部分依赖可能并非全部必需;具体需求取决于个人项目要求以及所使用的OpenCV模块[^2]。 #### 配置 NVIDIA 开发环境 下载并安装适用于系统的NVIDIA驱动程序、CUDA Toolkit 和 cuDNN SDK 。访问[NVIDIA官方网站](https://developer.nvidia.com/cuda-downloads),按照提示完成相应组件的选择与部署。 验证CUDA安装是否正确无误: ```bash nvcc --version nvidia-smi ``` #### 获取源码并编译 克隆官方GitHub仓库获取最新的OpenCV源代码,并切换到目标分支或标签页(此处假设为`master`)。创建一个新的构建目录用于存放生成文件,执行CMake配置脚本指定启用GPU加速选项以及其他个性化设置参数。 ```bash git clone https://github.com/opencv/opencv.git ~/opencv cd ~/opencv mkdir build cd build cmake .. -D CMAKE_BUILD_TYPE=Release \ -D WITH_CUDA=ON \ -D ENABLE_FAST_MATH=ON \ -D CUDA_ARCH_BIN="8.6" \ # 替换为你自己的 GPU 架构编号 -D OPENCV_EXTRA_MODULES_PATH=~/opencv_contrib/modules \ .. ``` > **重要**: `OPENCV_EXTRA_MODULES_PATH`指向额外功能模块路径,在此之前还需另行clone opencv_contrib仓库以解锁更多特性支持。 启动多线程模式加快编译速度,最后打包成deb格式便于分发给其他机器使用或者直接本地安装。 ```bash make -j$(nproc) sudo make install ``` 至此,已完成整个流程的操作说明。通过以上步骤可以实现在Ubuntu 20.04 LTS平台上顺利搭建起一套完整的基于CUDA硬件加速特性的计算机视觉开发框架——OpenCV
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值