C++中explicit关键字的作用

本文详细解释了C++中explicit关键字的作用及使用场景,通过对比带与不带explicit的构造函数,展示了如何防止不必要的隐式类型转换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

explicit用来防止由构造函数定义的隐式转换。

要明白它的作用,首先要了解隐式转换:可以用单个实参来调用的构造函数定义了从形参类型到该类类型的一个隐式转换。

例如:

复制代码
class things
{
    public:
        things(const std::string &name = ""):
              m_name(name),height(0),weight(10){}
        int CompareTo(const things & other);
        std::string m_name;
        int height;
        int weight;
};
复制代码

  

这里things的构造函数可以只用一个实参完成初始化。所以可以进行一个隐式转换,像下面这样:

things a;
................//在这里被初始化并使用。
std::string nm = "book_1";
//由于可以隐式转换,所以可以下面这样使用
int result = a.CompareTo(nm);

  这段程序使用一个string类型对象作为实参传给things的CompareTo函数。这个函数本来是需要一个tings对象作为实参。现在编译器使用string nm来构造并初始化一个

 things对象,新生成的临时的things对象被传递给CompareTo函数,并在离开这段函数后被析构。

  这种行为的正确与否取决于业务需要。假如你只是想测试一下a的重量与10的大小之比,这么做也许是方便的。但是假如在CompareTo函数中还涉及到了要除以初始化为0的height属性,那么这么做可能就是错误的。需要在构造tings之后更改height属性不为0。所以要限制这种隐式类型转换。

  那么这时候就可以通过将构造函数声明为explicit,来防止隐式类型转换。

  explicit关键字只能用于类内部的构造函数声明上,而不能用在类外部的函数定义上。现在things类像这样:

复制代码
class things
{
    public:
        explicit things(const std::string &name = ""):
              m_name(name),height(0),weight(0){}
        int CompareTo(const things & other);
        std::string m_name;
        int height;
        int weight;
};
复制代码

  这时再进行编译,在vs2008上会提示:没有可用于执行该转换的用户定义的转换运算符,或者无法调用该运算符。

  这时你仍然可以通过显示使用构造函数完成上面的类型转换:

things a;
................//在这里被初始化并使用。
std::string nm = "book_1";
//显示使用构造函数
int result = a.CompareTo(things(nm));

  google的c++规范中提到explicit的优点是可以避免不合时宜的类型变换,缺点无。所以google约定所有单参数的构造函数都必须是显示的,只有极少数情况下拷贝构造函数可以不声明称explicit。例如作为其他类的透明包装器的类。

  effective c++中说:被声明为explicit的构造函数通常比其non-explicit兄弟更受欢迎。因为它们禁止编译器执行非预期(往往也不被期望)的类型转换。除非我有一个好理由允许构造函数被用于隐式类型转换,否则我会把它声明为explicit。我鼓励你遵循相同的政策。

### C++ 中 `explicit` 关键字作用和用法 #### 单参数构造函数中的使用 在C++中,`explicit`关键字主要用于防止编译器执行不必要的隐式类型转换。当定义了一个只接受单一参数的构造函数时,如果不加`explicit`修饰,则该构造函数可以被用来实现从其参数类型的对象到类类型的隐式转换。这可能会导致一些难以察觉的错误。 通过声明为`explicit`,能够阻止这些潜在危险的行为发生,使得只有显式的强制转换才能触发此类构造过程[^1]: ```cpp class MyClass { public: // 不带 explicit 的构造函数允许隐式转换 MyClass(int value); }; void func(MyClass obj); int main() { int num = 5; // 下面这一行会因为存在无参构造而成功编译并运行, // 导致意料之外的对象创建行为。 func(num); } ``` 如果我们将上述例子中的构造函数改为带有`explicit`的关键字形式: ```cpp class MyClass { public: // 带有 explicit 的构造函数不允许隐式转换 explicit MyClass(int value); }; ``` 此时再尝试传递整数给期望接收`MyClass`实例的地方将会引发编译期报错,除非程序员明确指定了类型转换操作。 #### 转换运算符上的应用 除了应用于单个参数的构造函数外,`explicit`也可以标注于用户自定义类型之间的转换运算符上。同样地,这样做是为了避免不希望发生的自动转型情况的发生: ```cpp class IntWrapper { private: int m_value; public: // 显式指定此转换仅能由显示转换完成 explicit operator bool() const noexcept { return static_cast<bool>(m_value); } }; ``` 在这个案例里,即使有一个布尔上下文环境(比如条件判断),也不会让`IntWrapper`对象直接参与逻辑表达式的求值;相反,必须采用静态或动态方式来实施必要的转变动作。 关于多参数构造的情况,并不在`explicit`的应用范围内,因此对于这种情况下的处理方法并不涉及`explicit`关键字本身[^2]。然而值得注意的是,在某些版本之后的标准库支持下,可以通过大括号语法来进行初始化列表风格的新建工作,但这属于另一个话题了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值