POJ 3176 Cow Bowling

本文深入探讨了一个基于牛顿积分原理与动态规划方法的 bowling 问题解决策略,通过构建三角形数值路径,实现最优分数的计算。详细介绍了输入输出格式、动态规划公式及关键步骤,提供了清晰的代码实现和实例解析。

POJ  3176  Cow Bowling

Description

The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this: 

          7

        3   8

      8   1   0

    2   7   4   4

  4   5   2   6   5

Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame. 

Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.

Input

Line 1: A single integer, N 

Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.

Output

Line 1: The largest sum achievable using the traversal rules

Sample Input

573 88 1 02 7 4 44 5 2 6 5

Sample Output

30

Hint

Explanation of the sample: 

          7
         *
        3   8
       *
      8   1   0
       *
    2   7   4   4
       *
  4   5   2   6   5

The highest score is achievable by traversing the cows as shown above.

 

 

 

思路分析:

一个典型的动态规划题目,最关键的动态方程为:

result[i][j] = bowling[i][j] + Max(result[i+1][j],result[i+1][j+1])

 

代码如下:

#include <iostream>

#include <cstdio>

#include <cstdlib>

#include <cmath>

#include <cstring>

#include <vector>

#include <string>

#include <algorithm>

#define r 350

#define l 350

using namespace std;

 

int Max(int a,int b)

{

    return a >= b ? a : b;

}

 

int main()

{

    int N;

    int bowling[r][l];

    int result[r][l];

    freopen("1.txt","r",stdin);

    scanf("%d",&N);

    for(int i = 0;i < N;i++)

    {

        for(int j = 0;j <= i;j++)

        {

            scanf("%d",&bowling[i][j]);

        }

    }

 

    for(int i = 0;i < N;i++)

    {

        result[N-1][i] = bowling[N-1][i];//最下一层的结果即为原矩阵的最下一层

    }

 

    for(int i = N-2;i >= 0;i--)

    {

        for(int j = 0;j <= i;j++)

        {

            result[i][j] = bowling[i][j] + Max(result[i+1][j],result[i+1][j+1]);//从下往上不断更新

        }

    }

    printf("%d\n",result[0][0]);

    return 0;

}

 

【语音分离】基于平均谐波结构建模的无监督单声道音乐声源分离(Matlab代码实现)内容概要:本文介绍了基于平均谐波结构建模的无监督单声道音乐声源分离方法,并提供了相应的Matlab代码实现。该方法通过对音乐信号中的谐波结构进行建模,利用音源间的频率特征差异,实现对混合音频中不同乐器或人声成分的有效分离。整个过程无需标注数据,属于无监督学习范畴,适用于单通道录音场景下的语音与音乐分离任务。文中强调了算法的可复现性,并附带完整的仿真资源链接,便于读者学习与验证。; 适合人群:具备一定信号处理基础和Matlab编程能力的高校学生、科研人员及从事音频处理、语音识别等相关领域的工程师;尤其适合希望深入理解声源分离原理并进行算法仿真实践的研究者。; 使用场景及目标:①用于音乐音频中人声与伴奏的分离,或不同乐器之间的分离;②支持无监督条件下的语音处理研究,推动盲源分离技术的发展;③作为学术论文复现、课程项目开发或科研原型验证的技术参考。; 阅读建议:建议读者结合提供的Matlab代码与网盘资料同步运行调试,重点关注谐波建模与频谱分解的实现细节,同时可扩展学习盲源分离中的其他方法如独立成分分析(ICA)或非负矩阵分解(NMF),以加深对音频信号分离机制的理解。
内容概要:本文系统介绍了新能源汽车领域智能底盘技术的发展背景、演进历程、核心技术架构及创新形态。文章指出智能底盘作为智能汽车的核心执行层,通过线控化(X-By-Wire)和域控化实现驱动、制动、转向、悬架的精准主动控制,支撑高阶智能驾驶落地。技术发展历经机械、机电混合到智能三个阶段,当前以线控转向、线控制动、域控制器等为核心,并辅以传感器、车规级芯片、功能安全等配套技术。文中还重点探讨了“智能滑板底盘”这一创新形态,强调其高度集成化、模块化优势及其在成本、灵活性、空间利用等方面的潜力。最后通过“2025智能底盘先锋计划”的实车测试案例,展示了智能底盘在真实场景中的安全与性能表现,推动技术从研发走向市场验证。; 适合人群:汽车电子工程师、智能汽车研发人员、新能源汽车领域技术人员及对智能底盘技术感兴趣的从业者;具备一定汽车工程或控制系统基础知识的专业人士。; 使用场景及目标:①深入了解智能底盘的技术演进路径与系统架构;②掌握线控技术、域控制器、滑板底盘等关键技术原理与应用场景;③为智能汽车底盘研发、系统集成与技术创新提供理论支持与实践参考。; 阅读建议:建议结合实际车型和技术标准进行延伸学习,关注政策导向与行业测试动态,注重理论与实车验证相结合,全面理解智能底盘从技术构想到商业化落地的全过程。
【顶级EI复现】计及连锁故障传播路径的电力系统 N-k 多阶段双层优化及故障场景筛选模型(Matlab代码实现)内容概要:本文介绍了名为《【顶级EI复现】计及连锁故障传播路径的电力系统 N-k 多阶段双层优化及故障场景筛选模型(Matlab代码实现)》的技术资源,重点围绕电力系统中连锁故障的传播路径展开研究,提出了一种N-k多阶段双层优化模型,并结合故障场景筛选方法,用于提升电力系统在复杂故障条件下的安全性与鲁棒性。该模型通过Matlab代码实现,具备较强的工程应用价值和学术参考意义,适用于电力系统风险评估、脆弱性分析及预防控制策略设计等场景。文中还列举了大量相关的科研技术支持方向,涵盖智能优化算法、机器学习、路径规划、信号处理、电力系统管理等多个领域,展示了广泛的仿真与复现能力。; 适合人群:具备电力系统、自动化、电气工程等相关背景,熟悉Matlab编程,有一定科研基础的研究生、高校教师及工程技术人员。; 使用场景及目标:①用于电力系统连锁故障建模与风险评估研究;②支撑高水平论文(如EI/SCI)的模型复现与算法验证;③为电网安全分析、故障传播防控提供优化决策工具;④结合YALMIP等工具进行数学规划求解,提升科研效率。; 阅读建议:建议读者结合提供的网盘资源,下载完整代码与案例进行实践操作,重点关注双层优化结构与场景筛选逻辑的设计思路,同时可参考文档中提及的其他复现案例拓展研究视野。
### 解题思路 POJ 3613 Cow Relays 问题要求计算在给定的图中,从起点到终点恰好经过 $k$ 条边的最短路径。常规的暴力解法,即每次走一步更新最短路径,时间复杂度为 $O(k * n^3)$,效率较低。可利用二进制思想和矩阵快速幂的方法,将时间复杂度优化到 $O(logK * n^3)$ [^2]。 具体思路如下: 1. **图的表示**:使用邻接矩阵来表示图,矩阵中的元素 `mat[i][j]` 表示从节点 `i` 到节点 `j` 的最短距离,初始值设为无穷大 `INF`。 2. **矩阵乘法的定义**:普通矩阵乘法是对应元素相乘再相加,而这里定义的矩阵乘法是对应元素相加再取最小值。即 `C.mat[i][j] = min(C.mat[i][j], A.mat[i][k] + B.mat[k][j])`,表示从节点 `i` 经过节点 `k` 到节点 `j` 的最短距离。 3. **矩阵快速幂**:通过不断地将矩阵自乘,利用二进制的思想,快速计算出经过 $k$ 条边的最短路径矩阵。 4. **节点编号映射**:由于节点编号可能不连续,使用一个数组 `f` 来将原始节点编号映射到连续的编号,方便矩阵操作。 ### 代码实现 以下是实现该算法的 C++ 代码: ```cpp #include <stdio.h> #include <string.h> #include <algorithm> #include <iostream> using namespace std; #define INF ((1<<30)-1) int n; struct matrix { int mat[201][201]; matrix() { for(int i = 0; i < 201; i++) for(int j = 0; j < 201; j++) mat[i][j] = INF; } }; int f[2001]; matrix mul(matrix A, matrix B) { matrix C; int i, j, k; for(i = 1; i <= n; i++) { for(j = 1; j <= n; j++) { for(k = 1; k <= n; k++) { C.mat[i][j] = min(C.mat[i][j], A.mat[i][k] + B.mat[k][j]); } } } return C; } matrix powmul(matrix A, int k) { matrix B; for(int i = 1; i <= n; i++) B.mat[i][i] = 0; while(k) { if(k & 1) B = mul(B, A); A = mul(A, A); k >>= 1; } return B; } int main() { matrix A; int k, t, s, e, a, b, c; scanf("%d%d%d%d", &k, &t, &s, &e); int num = 1; while(t--) { scanf("%d%d%d", &c, &a, &b); if(f[a] == 0) f[a] = num++; if(f[b] == 0) f[b] = num++; A.mat[f[a]][f[b]] = A.mat[f[b]][f[a]] = c; } n = num - 1; A = powmul(A, k); cout << A.mat[f[s]][f[e]] << endl; return 0; } ``` ### 代码解释 1. **结构体 `matrix`**:定义了一个矩阵结构体,用于存储图的邻接矩阵,构造函数将矩阵元素初始化为无穷大。 2. **函数 `mul`**:实现了自定义的矩阵乘法,计算两个矩阵相乘的结果。 3. **函数 `powmul`**:实现了矩阵快速幂,通过不断地将矩阵自乘,快速计算出经过 $k$ 条边的最短路径矩阵。 4. **主函数 `main`**:读取输入数据,将节点编号映射到连续的编号,初始化邻接矩阵,调用 `powmul` 函数计算经过 $k$ 条边的最短路径矩阵,最后输出从起点到终点的最短距离。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值