Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 247744 Accepted Submission(s): 58531
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence.
If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
分析:经典的最大字段和+记录路径理解了转换公式就ok了;
详见代码:
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int main()
{
int n,t;
int a[100005];
int sum,MAX;
int start,end,tem;
int index=0;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
MAX=-100000000;
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
sum=start=tem=0;
for(int i=0;i<n;i++)
{
if(sum>0) //可能有的同学会纠结这个代码连实示例都不过,改为sum>=0就行了,其实两种方法都能找到最优解,只是区间记录的不一样
sum+=a[i];
else
{
tem=i;
sum=a[i];
}
if(sum>MAX)
{
MAX=sum;
start=tem; //这里必须借助tem变量,记录随时变化的左区间
end=i;
}
}
printf("Case %d:\n",++index);
printf("%d %d %d\n",MAX,start+1,end+1);
if(t>0)
printf("\n");
}
return 0;
}
本文解析了一个经典的编程问题——最大子数组和问题,并提供了一种有效的解决方案。通过对输入序列的遍历,算法能够找到具有最大和的子数组及其位置,适用于算法竞赛和技术面试等场景。
459

被折叠的 条评论
为什么被折叠?



