目录
1.算法概述
随着经济社会的迅猛发展,人们的生活水平的提高,机动车辆的数量也越来越多。为了提高车辆的管理效率,缓解公路上的交通压力,我们必须找到一种解决方案。而作为汽车“身份证”的汽车车牌,是在公众场合能够唯一确定汽车身份的凭证。我们可以以此为依据,设计一种车牌识别系统监控各个车辆的情况。传统的车牌识别需要先检测出车牌,检测出车牌后通过“像素映射”或者“联通区查找”的方法分割出单个的文字,然后基于模板匹配的方法单独识别每个文字。而一旦车牌上有物体遮挡到了文字的一部分,基于模板匹配的方法则完全不能识别出该数字或文字到底是什么。因此,传统的车牌识别方法不但存在步骤繁琐的弊端,而且对环境和车牌的可视度具有极高的要求。
————————————————
过去几年,深度学习(Deep learning)在解决诸如视觉识别(visual recognition)、语音识别(speech recognition)和自然语言处理(natural language processing)等很多问题方面都表现出非常好的性能。在不同类型的深度神经网络当中,卷积神经网络是得到最深入研究的。早期由于缺乏训练数据和计算能力,要在不产生过拟合(overfitting)的情况下训练高性能卷积神经网络是很困难的。标记数据和近来GPU的发展,使得卷积神经网络研究涌现并取得一流结果。本文中,我们将纵览卷积神经网络近来发展,同时介绍卷积神经
本文介绍了基于深度学习的CNN网络在车牌识别中的应用,详细阐述了算法概述,包括卷积神经网络的基本结构,并展示了MATLAB 2022a的仿真效果和源码。
订阅专栏 解锁全文
297

被折叠的 条评论
为什么被折叠?



