Python字典处理技巧

《Python for Data Analysis》

path = 'cho2/usagov_bitly_data2012-03-16-1331923249.txt'

import json
records = [json.loads(line) for line in open(path)]

time_zones = [rec['tz'] for rec in records if 'tz' in rec]

dict (基础用法)

def get_counts(sequence):
    counts = {}
    for x in sequence:
        if x in counts:
            counts[x] += 1
        else:
            counts[x] = 1
    return counts
def top_counts(count_dict, n = 10):
    value_key_pairs = [(count,tz) for tz, count in count_dict.items()]
    value_key_pairs.sort()
    return value_key_pairs[-n:]

使用标准Python库

from collections import defaultdict

def get_counts2(sequence):
    counts = defaultdict(int) # 所有值会被初始化为0
    for x in sequence:
        counts[x] += 1
    return counts
from collections import Counter 

counts = Counter(time_zones)
counts.most_common(10)

使用pandas

from pandas import DataFrame, Series

import pandas as pd
import numpy as np

frame = DataFrame(records)
frame['tz'][:10]

tz_counts = frame['tz'].value_counts()
tz_counts[:10]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值