[BIBM 2021]A Graph Attention Neural Network for Diagnosing ASD with fMRI Data

论文网址:A Graph Attention Neural Network for Diagnosing ASD with fMRI Data | IEEE Conference Publication | IEEE Xplore

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 心得

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Materials and Methods

2.3.1. Preliminaries on graph attention network for classification

2.3.2. Functional connectivity derived graph and feature construction

2.3.3. Connectivity based GAT model for Autism classification

2.4. Experiments and Results

2.4.1. Dataset preparation

2.4.2. Experiment setup

2.4.3. Discussions

2.5. Conclusion

3. Reference


1. 心得

(1)考古学家会梦到新idea吗

(2)有一种在刷全收集的感觉

(3)难以想象我如果21年读研会有多么开心

2. 论文逐段精读

2.1. Abstract

        ①They proposed a connectivity based graph attention network for autism diagnosis using functional connectivity (FC)(摘要也没说现在有什么挑战,可能因为太早了,还在拓展到临床应用)

2.2. Introduction

        ①很传统的intro,从ASD到fmri到FC和应用再到他们自己的GNN

2.3. Materials and Methods

2.3.1. Preliminaries on graph attention network for classification

        ①Representation of directed graph: G=(V,E,W), where V=1,\cdots,N denotes node set, E\in V\times V is edge set, and W{\in}[0,1]^{|V|\times|V|} denotes adjacency matrix(谁用W表示邻接矩阵啊)

        ②Node feature: h_i^0\in R^d

        ③For input nodes \mathbf{h}=\left\{\vec{h}_1,\vec{h}_2,\ldots,\vec{h}_N\right\},\vec{h}_i\in R^F, GAT calculates attention coefficients:

e_{ij}=a \begin{pmatrix} \mathbf{W}\vec{h}_i,\mathbf{W}\vec{h}_j \end{pmatrix}

where \mathbf{W} is learnable weight matrix

        ④Apply Softmax on attention score:

\alpha_{ij}=\mathrm{softmax}_j(e_{ij})=\frac{\exp(e_{ij})}{\sum_{k\in\mathcal{N}}\exp(e_{ik})}

        ⑤Updating function of single head GAT:

h_i^{\prime}=\sigma\left(\sum_{j\in\mathcal{N}_i}\alpha_{ij}\mathbf{W}\vec{h}_j\right)

where \sigma denotes activation function

        ⑥Multi head GAT:

\begin{aligned} & h_{i}^{\prime}=\|_{k=1}^K\sigma\left(\sum_{j\in N_i}a_{ij}^k\mathbf{W}^k\mathbf{h}_j\right) \\ & h_{i}^{\prime}=\sigma\left(\frac{1}{K}\sum_{k=1}^K\sum_{j\in N_i}a_{ij}^k\mathbf{W}^k\mathbf{h}_j\right) \end{aligned}

where \parallel denotes concatenation operation

2.3.2. Functional connectivity derived graph and feature construction

        ①Diagnose ASD by FC:

        ②Pearson correlation (PC) function:

r_{xy}=\frac{\sum_{i=1}^L\left(x_i-\bar{x}\right)\left(y_i-\bar{y}\right)}{\sqrt{\sum_{i=1}^L\left(x_i-\bar{x}\right)^2}\sqrt{\sum_{b=1}^L\left(y_b-\bar{y}\right)^2}}

        ③Parcellation: Powell 264

        ④Rewrite undirected graph as: G=(V,E,A)

        ⑤7 node feature: a) 3 graph related feature: centralities-graph degree, graph betweenness, graph eccentricity; b) 4 time related: mean, variance, skewness and kurtosis

skewness  n.偏斜    kurtosis  n.峰度;(曲线的)峰态;峭度;突出度(分布曲线中的高峰程度);(统)尖削度

2.3.3. Connectivity based GAT model for Autism classification

        ①PC is limited in high-order relationship capturing

2.4. Experiments and Results

2.4.1. Dataset preparation

        ①Dataset: ABIDE I

        ②Preprocessing: standard Open Tools, ANFI and FSL

2.4.2. Experiment setup

        ①Network parameters:

each GAT layer follows a ReLU layer, classifier is MLP with SoftMax, batch size is 8, dropout rate is 0.5

        ②Sample number: 871

        ③Data split: 75%:25%

        ④Cross validation: 5 fold

        ⑤Performance table:

2.4.3. Discussions

        ①Just a test

2.5. Conclusion

        ~

3. Reference

Yin, W. et al. (2021) A Graph Attention Neural Network for Diagnosing ASD with fMRI Data, IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX, USA.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值