英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用
目录
2.3.1. Preliminaries on graph attention network for classification
2.3.2. Functional connectivity derived graph and feature construction
2.3.3. Connectivity based GAT model for Autism classification
1. 心得
(1)考古学家会梦到新idea吗
(2)有一种在刷全收集的感觉
(3)难以想象我如果21年读研会有多么开心
2. 论文逐段精读
2.1. Abstract
①They proposed a connectivity based graph attention network for autism diagnosis using functional connectivity (FC)(摘要也没说现在有什么挑战,可能因为太早了,还在拓展到临床应用)
2.2. Introduction
①很传统的intro,从ASD到fmri到FC和应用再到他们自己的GNN
2.3. Materials and Methods
2.3.1. Preliminaries on graph attention network for classification
①Representation of directed graph: , where
denotes node set,
is edge set, and
denotes adjacency matrix(谁用
表示邻接矩阵啊)
②Node feature:
③For input nodes , GAT calculates attention coefficients:
where is learnable weight matrix
④Apply Softmax on attention score:
⑤Updating function of single head GAT:
where denotes activation function
⑥Multi head GAT:
where denotes concatenation operation
2.3.2. Functional connectivity derived graph and feature construction
①Diagnose ASD by FC:
②Pearson correlation (PC) function:
③Parcellation: Powell 264
④Rewrite undirected graph as:
⑤7 node feature: a) 3 graph related feature: centralities-graph degree, graph betweenness, graph eccentricity; b) 4 time related: mean, variance, skewness and kurtosis
skewness n.偏斜 kurtosis n.峰度;(曲线的)峰态;峭度;突出度(分布曲线中的高峰程度);(统)尖削度
2.3.3. Connectivity based GAT model for Autism classification
①PC is limited in high-order relationship capturing
2.4. Experiments and Results
2.4.1. Dataset preparation
①Dataset: ABIDE I
②Preprocessing: standard Open Tools, ANFI and FSL
2.4.2. Experiment setup
①Network parameters:
each GAT layer follows a ReLU layer, classifier is MLP with SoftMax, batch size is 8, dropout rate is 0.5
②Sample number: 871
③Data split: 75%:25%
④Cross validation: 5 fold
⑤Performance table:
2.4.3. Discussions
①Just a test
2.5. Conclusion
~
3. Reference
Yin, W. et al. (2021) A Graph Attention Neural Network for Diagnosing ASD with fMRI Data, IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX, USA.