[ICML 2022]How Graph Neural Networks Enhance Convolutional Neural Networks Towards Mining the Topolo

论文网址:How Graph Neural Networks Enhance Convolutional Neural Networks Towards Mining the Topological Structures from Histology

论文代码:GitHub - yiqings/HEGnnEnhanceCnn: Graph + Image Bimodal Deep Learning for Histology Image Classification

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 心得

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Integrating CNN with GNN

2.4. Experiments and Results

2.5. Discussion

3. Reference


1. 心得

(1)Workshop啦,主要是标题装不下了

(2)很短的论文正文只有四页,可以直接导航到主模型图看我中文解释一分钟搞定

(3)附录有组织图片还有一堆表的,感兴趣的可以论文里面自取,这里没有附录

2. 论文逐段精读

2.1. Abstract

        ①Existing methods to fuse global image-level and cell-level: MLP or transformer

oncology  n.[肿瘤] 肿瘤学    histology  n.组织学    colorectal  adj.结肠直肠的    gastric  adj.胃的;胃部的

2.2. Introduction

        ①They comibine CNN and GNN on training

2.3. Integrating CNN with GNN

        ①Overall framework:

(我不是做这个方向的,我猜测,第一行:一个人的输入是一个组织切片,输出是是否患病?第二行是一个切片分成很多patch,然后第三行每个patch经过CNN提取特征,右边是每个patch的每个核一起全部变成一个图然后用GNN来卷,和CNN一样,GNN也是每个patch得到一个图的图级表示。最后把CNN和GNN每个patch的特征concat在一起就接MLP了。感觉是个很简单的模型,毕竟也比较早期的,写得还是很易于理解的没有弯弯绕绕)

        ②For stained histology whole-slide images (WSIs) with 224*224 resolution, they split each of them into non-overlaped patches

        ③Fusion strategy:

        ④Each patch can be regarded as a cell graph \mathcal{G}=(\mathcal{V},\mathcal{E},\boldsymbol{X}), where \mathcal{V} denotes node set, \mathcal{E} is edge set, each nuclei region in graph is a node v_i

        ⑤Node features are extracted by CA2.5Net

        ⑥Edge is constructed by pair-wise Euclidean distance between nuclei centroids:

w_{ij}:= \begin{cases} d_c/d(v_i,v_j), \, \, \, \, \, d(v_i,v_j)\leq d_c\, \, \, \, {pixels}, \\ 0, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, {otherwise} \end{cases}

where d(v_i,v_j) denotes Euclidean distance, d_c denotes interaction between 2 cells. Adjacency matrix A_{ij}=w_{ij}

        ⑦Hidden representation updating:

\boldsymbol{H}_{\mathcal{G}}^{\ell}=\mathrm{ReLU}\left(\mathrm{GraphConv}\left(\boldsymbol{A},\boldsymbol{H}^{\ell-1}\right)\right)

        ⑧Alignment of CNN such as DenseNet:

\left.\boldsymbol{H}_{\mathcal{I}}^{\ell}=\mathrm{ReLU}\left(\mathrm{Conv}(\mathrm{concat}[\boldsymbol{H}_{\mathcal{I}}^{1},\ldots,\boldsymbol{H}_{\mathcal{I}}^{\ell-1}]\right)\right)

or ResNet:

\boldsymbol{H}_{\mathcal{I}}^{\ell}=\mathrm{ReLU}\left(\mathrm{Conv}(\boldsymbol{H}^{\ell-1})+\boldsymbol{H}^{\ell-1}\right)

        ⑨Combine output of CNN \boldsymbol{H}_{\mathcal{I}} and GNN \boldsymbol{H}_{\mathcal{G}} by MLP:

\boldsymbol{H}_{o}=\mathrm{Linear}(\mathrm{MLPBlock}(...(\mathrm{MLPBlock}(\boldsymbol{H}_{c}))))

where H_{c}=\mathrm{concat}\left[H_{\mathcal{I}},H_{\mathcal{G}}\right]MLPBlock(H)=Dropout(ReLU(Linear(H)))

        ⑩Combine output of CNN \boldsymbol{H}_{\mathcal{I}} and GNN \boldsymbol{H}_{\mathcal{G}} by Transformer:

H_o=\mathrm{Linear}(\text{TransBlock}(\cdots(\text{TransBlock}(H_c))))

2.4. Experiments and Results

        ①Datasets: CR-MSI (binary microsatellite instability (MSI) status classification), STAD-MSI (binary microsatellite instability (MSI) status classification), and GIST-PDL1 (binary Programmed Death-Ligand 1 (PD-L1) status binary classification)

        ②CNN backbones: MOBILENETV3, DENSENET, and RESNET

        ③Performance table:

2.5. Discussion

~

3. Reference

Shen, Y. et al. (2022) How Graph Neural Networks Enhance Convolutional Neural Networks Towards Mining the Topological Structures from Histology, ICML Workshop on Computational Biology. Baltimore, Maryland, USA.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值