英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用
目录
1. 心得
(1)Workshop啦,主要是标题装不下了
(2)很短的论文正文只有四页,可以直接导航到主模型图看我中文解释一分钟搞定
(3)附录有组织图片还有一堆表的,感兴趣的可以论文里面自取,这里没有附录
2. 论文逐段精读
2.1. Abstract
①Existing methods to fuse global image-level and cell-level: MLP or transformer
oncology n.[肿瘤] 肿瘤学 histology n.组织学 colorectal adj.结肠直肠的 gastric adj.胃的;胃部的
2.2. Introduction
①They comibine CNN and GNN on training
2.3. Integrating CNN with GNN
①Overall framework:
(我不是做这个方向的,我猜测,第一行:一个人的输入是一个组织切片,输出是是否患病?第二行是一个切片分成很多patch,然后第三行每个patch经过CNN提取特征,右边是每个patch的每个核一起全部变成一个图然后用GNN来卷,和CNN一样,GNN也是每个patch得到一个图的图级表示。最后把CNN和GNN每个patch的特征concat在一起就接MLP了。感觉是个很简单的模型,毕竟也比较早期的,写得还是很易于理解的没有弯弯绕绕)
②For stained histology whole-slide images (WSIs) with 224*224 resolution, they split each of them into non-overlaped patches
③Fusion strategy:
④Each patch can be regarded as a cell graph , where
denotes node set,
is edge set, each nuclei region in graph is a node
⑤Node features are extracted by CA2.5Net
⑥Edge is constructed by pair-wise Euclidean distance between nuclei centroids:
where denotes Euclidean distance,
denotes interaction between 2 cells. Adjacency matrix
⑦Hidden representation updating:
⑧Alignment of CNN such as DenseNet:
or ResNet:
⑨Combine output of CNN and GNN
by MLP:
where ,
⑩Combine output of CNN and GNN
by Transformer:
2.4. Experiments and Results
①Datasets: CR-MSI (binary microsatellite instability (MSI) status classification), STAD-MSI (binary microsatellite instability (MSI) status classification), and GIST-PDL1 (binary Programmed Death-Ligand 1 (PD-L1) status binary classification)
②CNN backbones: MOBILENETV3, DENSENET, and RESNET
③Performance table:
2.5. Discussion
~
3. Reference
Shen, Y. et al. (2022) How Graph Neural Networks Enhance Convolutional Neural Networks Towards Mining the Topological Structures from Histology, ICML Workshop on Computational Biology. Baltimore, Maryland, USA.